
Eduardo Antonio Ferraz Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5593467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune Responses Induced by the Leishmania (Leishmania) donovani A2 Antigen, but Not by the LACK Antigen, Are Protective against Experimental Leishmania (Leishmania) amazonensis Infection. Infection and Immunity, 2003, 71, 3988-3994.	2.2	220
2	Protective immunity against challenge with Leishmania (Leishmania) chagasi in beagle dogs vaccinated with recombinant A2 protein. Vaccine, 2008, 26, 5888-5895.	3.8	146
3	Identification of Proteins in Promastigote and Amastigote-like Leishmania Using an Immunoproteomic Approach. PLoS Neglected Tropical Diseases, 2012, 6, e1430.	3.0	95
4	Antigenicity and Protective Efficacy of a Leishmania Amastigote-specific Protein, Member of the Super-oxygenase Family, against Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2013, 7, e2148.	3.0	81
5	Making an anti-amastigote vaccine for visceral leishmaniasis: rational, update and perspectives. Current Opinion in Microbiology, 2012, 15, 476-485.	5.1	75
6	New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment. Revista Da Sociedade Brasileira De Medicina Tropical, 2015, 48, 235-242.	0.9	71
7	Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Parasitology International, 2011, 60, 357-363.	1.3	70
8	Evaluation of immune responses and protection induced by A2 and nucleoside hydrolase (NH) DNA vaccines against Leishmania chagasi and Leishmania amazonensis experimental infections. Microbes and Infection, 2007, 9, 1070-1077.	1.9	65
9	Field randomized trial to evaluate the efficacy of the Leish-Tec ® vaccine against canine visceral leishmaniasis in an endemic area of Brazil. Vaccine, 2016, 34, 2233-2239.	3.8	64
10	Intramuscular immunization with p36(LACK) DNA vaccine induces IFN-Î ³ production but does not protect BALB/c mice against Leishmania chagasi intravenous challenge. Parasitology Research, 2005, 98, 67-74.	1.6	57
11	Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitology Research, 2012, 110, 1277-1285.	1.6	54
12	Proteins Selected in Leishmania (Viannia) braziliensis by an Immunoproteomic Approach with Potential Serodiagnosis Applications for Tegumentary Leishmaniasis. Vaccine Journal, 2015, 22, 1187-1196.	3.1	54
13	Identification of Differentially Expressed Proteins from Leishmania amazonensis Associated with the Loss of Virulence of the Parasites. PLoS Neglected Tropical Diseases, 2014, 8, e2764.	3.0	52
14	Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, 2014, 143, 60-68.	1.2	52
15	Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis. Revista Da Sociedade Brasileira De Medicina Tropical, 2016, 49, 398-407.	0.9	49
16	Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. International Journal of Nanomedicine, 2014, 9, 877.	6.7	43
17	Treatment of murine visceral leishmaniasis using an 8-hydroxyquinoline-containing polymeric micelle system. Parasitology International, 2016, 65, 728-736.	1.3	41
18	Poloxamer 407 (Pluronic® F127)-based polymeric micelles for amphotericin B: InÂvitro biological activity, toxicity and inÂvivo therapeutic efficacy against murine tegumentary leishmaniasis. Experimental Parasitology, 2016, 169, 34-42.	1.2	41

#	Article	IF	CITATIONS
19	An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis. Veterinary Parasitology, 2016, 217, 81-88.	1.8	41
20	Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis. Vaccine, 2013, 31, 1312-1319.	3.8	40
21	Vaccination with the Leishmania infantum ribosomal proteins induces protection in BALB/c mice against Leishmania chagasi and Leishmania amazonensis challenge. Microbes and Infection, 2010, 12, 967-977.	1.9	39
22	An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. International Journal of Nanomedicine, 2014, 9, 5341.	6.7	39
23	A recombinant chimeric protein composed of human and miceâ€specific <scp>CD</scp> 4 ⁺ and <scp>CD</scp> 8 ⁺ Tâ€cell epitopes protects against visceral leishmaniasis. Parasite Immunology, 2017, 39, e12359.	1.5	39
24	Mimotope-Based Vaccines of Leishmania infantum Antigens and Their Protective Efficacy against Visceral Leishmaniasis. PLoS ONE, 2014, 9, e110014.	2.5	36
25	Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitology Research, 2015, 114, 4625-4635.	1.6	36
26	Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against <i>Leishmania infantum</i> and <i>Leishmania amazonensis</i> Species. Basic and Clinical Pharmacology and Toxicology, 2018, 123, 236-246.	2.5	35
27	A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasites and Vectors, 2015, 8, 363.	2.5	34
28	Mapping B-Cell Epitopes for the Peroxidoxin of Leishmania (Viannia) braziliensis and Its Potential for the Clinical Diagnosis of Tegumentary and Visceral Leishmaniasis. PLoS ONE, 2014, 9, e99216.	2.5	34
29	Specific Serodiagnosis of Canine Visceral Leishmaniasis Using <i>Leishmania</i> Species Ribosomal Protein Extracts. Vaccine Journal, 2009, 16, 1774-1780.	3.1	33
30	Prophylactic properties of a <i>Leishmania</i> â€specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunology, 2015, 37, 646-656.	1.5	33
31	Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cellular Immunology, 2018, 323, 59-69.	3.0	33
32	Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Experimental Parasitology, 2018, 186, 24-35.	1.2	32
33	Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasites and Vectors, 2014, 7, 3.	2.5	31
34	Antileishmanial activity and mechanism of action from a purified fraction of Zingiber officinalis Roscoe against Leishmania amazonensis. Experimental Parasitology, 2016, 166, 21-28.	1.2	31
35	Mycobacterium hsp65 DNA entrapped into TDM-loaded PLGA microspheres induces protection in mice against Leishmania (Leishmania) major infection. Parasitology Research, 2006, 98, 568-575.	1.6	29
36	A vaccine combining two Leishmania braziliensis proteins offers heterologous protection against Leishmania infantum infection. Molecular Immunology, 2016, 76, 70-79.	2.2	29

#	Article	IF	CITATIONS
37	Identification of immune biomarkers related to disease progression and treatment efficacy in human visceral leishmaniasis. Immunobiology, 2018, 223, 303-309.	1.9	29
38	Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis. Translational Research, 2018, 200, 18-34.	5.0	29
39	<i>Strychnos pseudoquina</i> and Its Purified Compounds Present an Effective <i>In Vitro</i> Antileishmanial Activity. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-9.	1.2	28
40	An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis. Parasitology Research, 2016, 115, 4083-4095.	1.6	28
41	A new Leishmania-specific hypothetical protein and its non-described specific B cell conformational epitope applied in the serodiagnosis of canine visceral leishmaniasis. Parasitology Research, 2016, 115, 1649-1658.	1.6	27
42	In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomedicine and Pharmacotherapy, 2019, 109, 779-787.	5.6	27
43	Antileishmanial activity of standardized fractions of Stryphnodendron obovatum (Barbatimão) extract and constituent compounds. Journal of Ethnopharmacology, 2015, 165, 238-242.	4.1	26
44	Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances. World Journal of Microbiology and Biotechnology, 2015, 31, 1793-1800.	3.6	26
45	Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species. Parasitology Research, 2018, 117, 391-403.	1.6	26
46	A Pluronic® F127-based polymeric micelle system containing an antileishmanial molecule is immunotherapeutic and effective in the treatment against Leishmania amazonensis infection. Parasitology International, 2019, 68, 63-72.	1.3	26
47	A candidate vaccine for human visceral leishmaniasis based on a specific T cell epitope-containing chimeric protein protects mice against Leishmania infantum infection. Npj Vaccines, 2020, 5, 75.	6.0	26
48	Sensitive and Specific Serodiagnosis of Leishmania infantum Infection in Dogs by Using Peptides Selected from Hypothetical Proteins Identified by an Immunoproteomic Approach. Vaccine Journal, 2013, 20, 835-841.	3.1	25
49	Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Veterinary Parasitology, 2016, 215, 63-71.	1.8	25
50	Leishmania infantum mimotopes and a phage–ELISA assay as tools for a sensitive and specific serodiagnosis of human visceral leishmaniasis. Diagnostic Microbiology and Infectious Disease, 2017, 87, 219-225.	1.8	25
51	Subtractive Phage Display Selection from Canine Visceral Leishmaniasis Identifies Novel Epitopes That Mimic Leishmania infantum Antigens with Potential Serodiagnosis Applications. Vaccine Journal, 2014, 21, 96-106.	3.1	24
52	Antigenicity of phage clones and their synthetic peptides for the serodiagnosis of canine and human visceral leishmaniasis. Microbial Pathogenesis, 2017, 110, 14-22.	2.9	24
53	Prophylactic or therapeutic administration of Agaricus blazei Murill is effective in treatment of murine visceral leishmaniasis. Experimental Parasitology, 2012, 132, 228-236.	1.2	23
54	Antigenic extracts of Leishmania braziliensis and Leishmania amazonensis associated with saponin partially protects BALB/c mice against Leishmania chagasi infection by suppressing IL-10 and IL-4 production. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 818-822.	1.6	22

#	Article	IF	CITATIONS
55	Phage-fused epitopes from <i>Leishmania infantum</i> used as immunogenic vaccines confer partial protection against <i>Leishmania amazonensis</i> infection. Parasitology, 2015, 142, 1335-1347.	1.5	22
56	Serological diagnosis and prognostic of tegumentary and visceral leishmaniasis using a conserved Leishmania hypothetical protein. Parasitology International, 2018, 67, 344-350.	1.3	22
57	Diagnostic evaluation of the amastin protein from Leishmania infantum in canine and human visceral leishmaniasis and immunogenicity in human cells derived from patients and healthy controls. Diagnostic Microbiology and Infectious Disease, 2019, 95, 134-143.	1.8	22
58	A clioquinol-containing Pluronic [®] F127 polymeric micelle system is effective in the treatment of visceral leishmaniasis in a murine model. Parasite, 2020, 27, 29.	2.0	22
59	Therapeutic efficacy induced by the oral administration of Agaricus blazei Murill against Leishmania amazonensis. Parasitology Research, 2012, 111, 1807-1816.	1.6	21
60	Theranostic applications of phage display to control leishmaniasis: selection of biomarkers for serodiagnostics, vaccination, and immunotherapy. Revista Da Sociedade Brasileira De Medicina Tropical, 2015, 48, 370-379.	0.9	21
61	Evaluation of adjuvant activity of fractions derived from Agaricus blazei, when in association with the recombinant LiHyp1 protein, to protect against visceral leishmaniasis. Experimental Parasitology, 2015, 153, 180-190.	1.2	21
62	A new Leishmania-specific hypothetical protein, LiHyT, used as a vaccine antigen against visceral leishmaniasis. Acta Tropica, 2016, 154, 73-81.	2.0	21
63	Epitope Mapping of the HSP83.1 Protein of Leishmania braziliensis Discloses Novel Targets for Immunodiagnosis of Tegumentary and Visceral Clinical Forms of Leishmaniasis. Vaccine Journal, 2014, 21, 949-959.	3.1	20
64	An ELISA immunoassay employing a conserved Leishmania hypothetical protein for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. Cellular Immunology, 2017, 318, 42-48.	3.0	20
65	Immunogenicity and protective efficacy of a new Leishmania hypothetical protein applied as a DNA vaccine or in a recombinant form against Leishmania infantum infection. Molecular Immunology, 2019, 106, 108-118.	2.2	20
66	Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis. PLoS ONE, 2015, 10, e0137683.	2.5	19
67	New serological tools for improved diagnosis of human tegumentary leishmaniasis. Journal of Immunological Methods, 2016, 434, 39-45.	1.4	19
68	A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection. Cellular Immunology, 2017, 313, 32-42.	3.0	18
69	A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection. Immunobiology, 2017, 222, 251-260.	1.9	18
70	A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine, 2018, 111, 131-139.	3.2	18
71	Liposomal Formulation of ChimeraT, a Multiple T-Cell Epitope-Containing Recombinant Protein, Is a Candidate Vaccine for Human Visceral Leishmaniasis. Vaccines, 2020, 8, 289.	4.4	18
72	Evaluation of a hypothetical protein for serodiagnosis and as a potential marker for post-treatment serological evaluation of tegumentary leishmaniasis patients. Parasitology Research, 2017, 116, 1197-1206.	1.6	17

#	Article	IF	CITATIONS
73	Screening diagnostic candidates from <i>Leishmania infantum</i> proteins for human visceral leishmaniasis using an immunoproteomics approach. Parasitology, 2019, 146, 1467-1476.	1.5	17
74	Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice. PLoS Neglected Tropical Diseases, 2015, 9, e0003751.	3.0	16
75	Annexin A1 Is Involved in the Resolution of Inflammatory Responses during <i>Leishmania braziliensis</i> Infection. Journal of Immunology, 2017, 198, 3227-3236.	0.8	16
76	New antigens for the serological diagnosis of human visceral leishmaniasis identified by immunogenomic screening. PLoS ONE, 2018, 13, e0209599.	2.5	16
77	Immunogenomic screening approach to identify new antigens for the serological diagnosis of chronic Chagas' disease. Applied Microbiology and Biotechnology, 2018, 102, 6069-6080.	3.6	16
78	In silico Leishmania proteome mining applied to identify drug target potential to be used to treat against visceral and tegumentary leishmaniasis. Journal of Molecular Graphics and Modelling, 2019, 87, 89-97.	2.4	16
79	An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics. Experimental Parasitology, 2017, 176, 66-74.	1.2	15
80	Selection strategy of phage-displayed immunogens based on an in vitro evaluation of the Th1 response of PBMCs and their potential use as a vaccine against Leishmania infantum infection. Parasites and Vectors, 2017, 10, 617.	2.5	15
81	Small Myristoylated Protein-3, Identified as a Potential Virulence Factor in Leishmania amazonensis, Proves to be a Protective Antigen against Visceral Leishmaniasis. International Journal of Molecular Sciences, 2018, 19, 129.	4.1	15
82	A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis. Parasitology International, 2019, 73, 101966.	1.3	15
83	Potential application of small myristoylated protein-3 evaluated as recombinant antigen and a synthetic peptide containing its linear B-cell epitope for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Immunobiology, 2019, 224, 163-171.	1.9	15
84	Cross-protective efficacy of Leishmania infantum LiHyD protein against t egumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Tropica, 2016, 158, 220-230.	2.0	14
85	Probing the efficacy of a heterologous Leishmania/L. Viannia braziliensis recombinant enolase as a candidate vaccine to restrict the development of L. infantum in BALB/c mice. Acta Tropica, 2017, 171, 8-16.	2.0	14
86	Resveratrol analogues present effective antileishmanial activity against promastigotes and amastigotes from distinct <i>Leishmania</i> species by multitarget action in the parasites. Journal of Pharmacy and Pharmacology, 2019, 71, 1854-1863.	2.4	14
87	Recombinant small glutamine-rich tetratricopeptide repeat-containing protein of Leishmania infantum: Potential vaccine and diagnostic application against visceral leishmaniasis. Molecular Immunology, 2017, 91, 272-281.	2.2	13
88	A Computational Approach Using Bioinformatics to Screening Drug Targets for <i> Leishmania infantum</i> Species. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-9.	1.2	13
89	A conserved Leishmania hypothetical protein evaluated for the serodiagnosis of canine and human visceral and tegumentary leishmaniasis, as well as a serological marker for the posttreatment patient follow-up. Diagnostic Microbiology and Infectious Disease, 2018, 92, 196-203.	1.8	13
90	A rapid diagnostic test for human Visceral Leishmaniasis using novel <i>Leishmania</i> antigens in a Laser Direct-Write Lateral Flow Device. Emerging Microbes and Infections, 2019, 8, 1178-1185.	6.5	13

#	Article	IF	CITATIONS
91	Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis. Experimental Parasitology, 2019, 199, 30-37.	1.2	13
92	Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines, 2019, 7, 183.	4.4	13
93	High-through identification of T cell-specific phage-exposed mimotopes using PBMCs from tegumentary leishmaniasis patients and their use as vaccine candidates against Leishmania amazonensis infection. Parasitology, 2019, 146, 322-332.	1.5	13
94	Evaluation of a Prototype Flow Cytometry Test for Serodiagnosis of Canine Visceral Leishmaniasis. Vaccine Journal, 2013, 20, 1792-1798.	3.1	12
95	Diagnostic application of recombinant Leishmania proteins and evaluation of their in vitro immunogenicity after stimulation of immune cells collected from tegumentary leishmaniasis patients and healthy individuals. Cellular Immunology, 2018, 334, 61-69.	3.0	12
96	A biomarker for tegumentary and visceral leishmaniasis based on a recombinant Leishmania hypothetical protein. Immunobiology, 2019, 224, 477-484.	1.9	12
97	In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species. Acta Tropica, 2019, 191, 29-37.	2.0	12
98	Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis. Parasitology, 2018, 145, 740-751.	1.5	11
99	Immunodiagnosis of human and canine visceral leishmaniasis using recombinant Leishmania infantum Prohibitin protein and a synthetic peptide containing its conformational B-cell epitope. Journal of Immunological Methods, 2019, 474, 112641.	1.4	11
100	Recombinant Leishmania eukaryotic elongation factor-1 beta protein: A potential diagnostic antigen to detect tegumentary and visceral leishmaniasis in dogs and humans. Microbial Pathogenesis, 2019, 137, 103783.	2.9	11
101	Leishmania infantum β-Tubulin Identified by Reverse Engineering Technology through Phage Display Applied as Theranostic Marker for Human Visceral Leishmaniasis. International Journal of Molecular Sciences, 2019, 20, 1812.	4.1	11
102	Canine visceral leishmaniasis: Detection of Leishmania spp. genome in peripheral blood of seropositive dogs by real-time polymerase chain reaction (rt-PCR). Microbial Pathogenesis, 2019, 126, 263-268.	2.9	11
103	Digitoxigenin presents an effective and selective antileishmanial action against Leishmania infantum and is a potential therapeutic agent for visceral leishmaniasis. Parasitology Research, 2021, 120, 321-335.	1.6	11
104	lvermectin presents effective and selective antileishmanial activity in vitro and in vivo against Leishmania infantum and is therapeutic against visceral leishmaniasis. Experimental Parasitology, 2021, 221, 108059.	1.2	11
105	Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis. Cytokine, 2020, 129, 155031.	3.2	10
106	Synthesis and antileishmanial activity of 1,3-bis(aryloxy)propan-2-amines. Medicinal Chemistry Research, 2017, 26, 1052-1072.	2.4	9
107	Performance of Leishmania braziliensis enolase protein for the serodiagnosis of canine and human visceral leishmaniosis. Veterinary Parasitology, 2017, 238, 77-81.	1.8	9
108	Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans. Cellular Immunology, 2018, 331, 67-77.	3.0	9

#	Article	IF	CITATIONS
109	A Leishmania infantum hypothetical protein evaluated as a recombinant protein and specific B-cell epitope for the serodiagnosis and prognosis of visceral leishmaniasis. Acta Tropica, 2020, 203, 105318.	2.0	9
110	Acarbose presents in vitro and in vivo antileishmanial activity against Leishmania infantum and is a promising therapeutic candidate against visceral leishmaniasis. Medical Microbiology and Immunology, 2021, 210, 133-147.	4.8	9
111	Synthesis, antileishmanial activity and QSAR studies of 2-chloro- N -arylacetamides. Brazilian Journal of Pharmaceutical Sciences, 2017, 53, .	1.2	8
112	Diagnostic markers selected by immunoproteomics and phage display applied for the serodiagnosis of canine leishmaniosis. Research in Veterinary Science, 2019, 126, 4-8.	1.9	8
113	Evaluation of Leishmania infantum pyridoxal kinase protein for the diagnosis of human and canine visceral leishmaniasis. Immunology Letters, 2020, 220, 11-20.	2.5	8
114	Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunology, 2020, 42, e12784.	1.5	7
115	Leishmania infantum pyridoxal kinase evaluated in a recombinant protein and DNA vaccine to protects against visceral leishmaniasis. Molecular Immunology, 2020, 124, 161-171.	2.2	7
116	An immunoproteomics approach to identify <i>Leishmania infantum</i> proteins to be applied for the diagnosis of visceral leishmaniasis and human immunodeficiency virus co-infection. Parasitology, 2020, 147, 932-939.	1.5	7
117	Development of a chimeric protein based on a proteomic approach for the serological diagnosis of human tegumentary leishmaniasis. Applied Microbiology and Biotechnology, 2021, 105, 6805-6817.	3.6	7
118	Flau-A, a naphthoquinone derivative, is a promising therapeutic candidate against visceral leishmaniasis: A preliminary study. Experimental Parasitology, 2022, 233, 108205.	1.2	7
119	Evaluation of the protective efficacy of a Leishmania protein associated with distinct adjuvants against visceral leishmaniasis and in vitro immunogenicity in human cells. Parasitology Research, 2020, 119, 2609-2622.	1.6	6
120	Biotechnological applications from a Leishmania amastigote-specific hypothetical protein in the canine and human visceral leishmaniasis. Microbial Pathogenesis, 2020, 147, 104283.	2.9	6
121	<i>In vitro</i> and <i>in vivo</i> antileishmanial activity of β-acetyl-digitoxin, a cardenolide of <i>Digitalis lanata</i> potentially useful to treat visceral leishmaniasis. Parasite, 2021, 28, 38.	2.0	6
122	A recombinant Leishmania amastigote-specific protein, rLiHyG, with adjuvants, protects against infection with Leishmania infantum. Acta Tropica, 2022, 230, 106412.	2.0	6
123	A Leishmania amastigote-specific hypothetical protein evaluated as recombinant protein plus Th1 adjuvant or DNA plasmid-based vaccine to protect against visceral leishmaniasis. Cellular Immunology, 2020, 356, 104194.	3.0	5
124	A new Leishmania hypothetical protein can be used for accurate serodiagnosis of canine and human visceral leishmaniasis and as a potential prognostic marker for human disease. Experimental Parasitology, 2020, 216, 107941.	1.2	5
125	Parasitological and immunological evaluation of a quinoline derivative salt incorporated into a polymeric micelle formulation against Leishmania infantum infection. Parasitology Research, 2022, 121, 2129-2140.	1.6	5
126	Leishmanicidal activity of ibuprofen and its complexes with Ni(II), Mn(II) and Pd(II). Inorganic Chemistry Communication, 2020, 113, 107756.	3.9	4

#	Article	IF	CITATIONS
127	Application of Poloxamers for the Development of Drug Delivery System to Treat Leishmaniasis: A Review. Current Drug Targets, 2021, 22, 296-309.	2.1	4
128	Potential of recombinant LiHyQ, a novel Leishmania infantum protein, for the diagnosis of canine visceral leishmaniasis and as a diagnostic and prognostic marker for human leishmaniasis and human immunodeficiency virus co-infection: A preliminary study. Acta Tropica, 2021, 224, 106126.	2.0	4
129	Mapping linear B-cell epitopes of the Tryparedoxin Peroxidase and its implications in the serological diagnosis of tegumentary leishmaniasis. Acta Tropica, 2022, 232, 106521.	2.0	4
130	Crossâ€protective efficacy from a immunogen firstly identified in <i><scp>L</scp>eishmania infantum</i> against tegumentary leishmaniasis. Parasite Immunology, 2016, 38, 108-117.	1.5	3
131	Leishmania eukaryotic elongation Factor-1 beta protein is immunogenic and induces parasitological protection in mice against Leishmania infantum infection. Microbial Pathogenesis, 2021, 151, 104745.	2.9	3
132	Diagnostic application of sensitive and specific phage-exposed epitopes for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology, 2021, 148, 1706-1714.	1.5	3
133	Serodiagnosis of canine leishmaniasis using a novel recombinant chimeric protein constructed with distinct B-cell epitopes from antigenic Leishmania infantum proteins. Veterinary Parasitology, 2021, 296, 109513.	1.8	3
134	Sensitive and specific serodiagnosis of tegumentary leishmaniasis using a new chimeric protein based on specific B-cell epitopes of Leishmania antigenic proteins. Microbial Pathogenesis, 2022, 162, 105341.	2.9	3
135	<i>Leishmania</i> Â <scp>LiHyC</scp> protein is immunogenic and induces protection against visceral leishmaniasis. Parasite Immunology, 2022, 44, e12921.	1.5	3
136	1,3â€Bis(aryloxy)propanâ€2â€ols as potential antileishmanial agents. Chemical Biology and Drug Design, 2017, 90, 981-986.	3.2	2
137	ChimLeish, a new recombinant chimeric protein evaluated as a diagnostic and prognostic marker for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology Research, 2021, 120, 4037-4047.	1.6	2
138	Recombinant guanosine-5′-triphosphate (GTP)-binding protein associated with Poloxamer 407-based polymeric micelles protects against Leishmania infantum infection. Cytokine, 2022, 153, 155865.	3.2	2
139	In Silico Design of Recombinant Chimera T Cell Peptide Epitope Vaccines for Visceral Leishmaniasis. Methods in Molecular Biology, 2022, 2410, 463-480.	0.9	2
140	Preclinical Assessment of the Immunogenicity of Experimental Leishmania Vaccines. Methods in Molecular Biology, 2022, 2410, 481-502.	0.9	2
141	A simple quinoline salt derivative is active in vitro against Plasmodiumf alciparum asexual blood stages and inhibits the development of cerebral malaria in murine model. Chemico-Biological Interactions, 2022, 355, 109848.	4.0	1
142	Evaluation from a B-cell epitope-based chimeric protein for the serodiagnosis of tegumentary and visceral leishmaniasis. Microbial Pathogenesis, 2022, 167, 105562.	2.9	1
143	Development of an immunogen containing CD4+/CD8+ T-cell epitopes for the prophylaxis of tegumentary leishmaniasis. Applied Microbiology and Biotechnology, 2022, 106, 4627-4641.	3.6	1
144	Efficacy of the 7-chloro-4-(3-hydroxy-benzilidenehydrazo)quinoline derivative against infection caused by Leishmania amazonensis. Revista Da Sociedade Brasileira De Medicina Tropical, 2020, 53, e20200091.	0.9	0