List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/559324/publications.pdf Version: 2024-02-01

		32410	25983
124	16,881	55	112
papers	citations	h-index	g-index
132	132	132	21788
all docs	docs citations	times ranked	citing authors

ALAN D D'ANDREA

#	Article	IF	CITATIONS
1	Phase 1b Clinical Trial with Alpelisib plus Olaparib for Patients with Advanced Triple-Negative Breast Cancer. Clinical Cancer Research, 2022, 28, 1493-1499.	3.2	22
2	Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. Nature Communications, 2022, 13, 835.	5.8	32
3	Abstract P2-07-13: High-dimensional, single-cell analysis and transcriptional profiling reveal novel correlatives of response to PARP inhibition plus PD-1 blockade in triple-negative breast cancer. Cancer Research, 2022, 82, P2-07-13-P2-07-13.	0.4	0
4	Combined PARP and HSP90 inhibition: preclinical and Phase 1 evaluation in patients with advanced solid tumours. British Journal of Cancer, 2022, 126, 1027-1036.	2.9	18
5	Metformin for treatment of cytopenias in children and young adults with Fanconi anemia. Blood Advances, 2022, 6, 3803-3811.	2.5	4
6	Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer. Cancer Discovery, 2022, 12, 1904-1921.	7.7	25
7	MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia. Cell Stem Cell, 2021, 28, 33-47.e8.	5.2	31
8	Inhibition of TGFβ1 and TGFβ3 promotes hematopoiesis in Fanconi anemia. Experimental Hematology, 2021, 93, 70-84.e4.	0.2	8
9	Clinical Efficacy and Molecular Response Correlates of the WEE1 Inhibitor Adavosertib Combined with Cisplatin in Patients with Metastatic Triple-Negative Breast Cancer. Clinical Cancer Research, 2021, 27, 983-991.	3.2	29
10	Heterogeneity and Clonal Evolution of Acquired PARP Inhibitor Resistance in <i>TP53-</i> and <i>BRCA1</i> -Deficient Cells. Cancer Research, 2021, 81, 2774-2787.	0.4	17
11	Genomic Landscape of Primary and Recurrent Anal Squamous Cell Carcinomas in Relation to HPV Integration, Copy-Number Variation, and DNA Damage Response Genes. Molecular Cancer Research, 2021, 19, 1308-1321.	1.5	8
12	REV7 directs DNA repair pathway choice. Trends in Cell Biology, 2021, 31, 965-978.	3.6	22
13	A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. Nature Cancer, 2021, 2, 598-610.	5.7	168
14	Phase 1 Combination Study of the CHK1 Inhibitor Prexasertib and the PARP Inhibitor Olaparib in High-grade Serous Ovarian Cancer and Other Solid Tumors. Clinical Cancer Research, 2021, 27, 4710-4716.	3.2	51
15	Opportunities for Utilization of DNA Repair Inhibitors in Homologous Recombination Repair-Deficient and Proficient Pancreatic Adenocarcinoma. Clinical Cancer Research, 2021, 27, 6622-6637.	3.2	7
16	Abstract 2747: Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. , 2021, , .		0
17	A Replication stress biomarker is associated with response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in ovarian cancer. Nature Communications, 2021, 12, 5574.	5.8	32
18	Isolation of human and murine hematopoietic stem cells for DNA damage and DNA repair assays. STAR Protocols, 2021, 2, 100846.	0.5	1

#	Article	IF	CITATIONS
19	Durable clinical benefit from PARP inhibition in a platinum-sensitive, BRCA2-mutated pancreatic cancer patient after earlier progression on placebo treatment on the POLO trial: a case report. Journal of Gastrointestinal Oncology, 2021, 12, 3133-3140.	0.6	2
20	TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nature Cell Biology, 2020, 22, 87-96.	4.6	96
21	p31 ^{comet} promotes homologous recombination by inactivating REV7 through the TRIP13 ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26795-26803.	3.3	21
22	Exploiting the Microhomology-Mediated End-Joining Pathway in Cancer Therapy. Cancer Research, 2020, 80, 4593-4600.	0.4	47
23	CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress. Molecular Cell, 2020, 80, 410-422.e6.	4.5	38
24	TBCRC 048: Phase II Study of Olaparib for Metastatic Breast Cancer and Mutations in Homologous Recombination-Related Genes. Journal of Clinical Oncology, 2020, 38, 4274-4282.	0.8	276
25	Biomarker-Guided Development of DNA Repair Inhibitors. Molecular Cell, 2020, 78, 1070-1085.	4.5	157
26	Tumour predisposition and cancer syndromes as models to study gene–environment interactions. Nature Reviews Cancer, 2020, 20, 533-549.	12.8	93
27	Disassembly of the Shieldin Complex by TRIP13. Cell Cycle, 2020, 19, 1565-1575.	1.3	8
28	Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncology, The, 2020, 21, 957-968.	5.1	140
29	Immunogenomic profiling determines responses to combined PARP and PD-1 inhibition in ovarian cancer. Nature Communications, 2020, 11, 1459.	5.8	176
30	Cooperation of the ATM and Fanconi Anemia/BRCA Pathways in Double-Strand Break End Resection. Cell Reports, 2020, 30, 2402-2415.e5.	2.9	51
31	<i>ERCC2</i> Helicase Domain Mutations Confer Nucleotide Excision Repair Deficiency and Drive Cisplatin Sensitivity in Muscle-Invasive Bladder Cancer. Clinical Cancer Research, 2019, 25, 977-988.	3.2	104
32	Predictive Potential of Head and Neck Squamous Cell Carcinoma Organoids. Cancer Discovery, 2019, 9, 828-830.	7.7	20
33	Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia. PLoS ONE, 2019, 14, e0221288.	1.1	16
34	The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition. Clinical Cancer Research, 2019, 25, 6127-6140.	3.2	104
35	A Fanci knockout mouse model reveals common and distinct functions for FANCI and FANCD2. Nucleic Acids Research, 2019, 47, 7532-7547.	6.5	36
36	Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma. JAMA Oncology, 2019, 5, 1141.	3.4	355

#	Article	IF	CITATIONS
37	Olaparib and α-specific PI3K inhibitor alpelisib for patients with epithelial ovarian cancer: a dose-escalation and dose-expansion phase 1b trial. Lancet Oncology, The, 2019, 20, 570-580.	5.1	191
38	WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature, 2019, 568, 551-556.	13.7	253
39	The Fanconi Anemia Pathway in Cancer. Annual Review of Cancer Biology, 2019, 3, 457-478.	2.3	261
40	NF-κB inhibition by dimethylaminoparthenolide radiosensitizes non-small-cell lung carcinoma by blocking DNA double-strand break repair. Cell Death Discovery, 2018, 4, 10.	2.0	15
41	DNA Repair Deficiency and Immunotherapy Response. Journal of Clinical Oncology, 2018, 36, 1710-1713.	0.8	31
42	USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors. Molecular Cell, 2018, 72, 925-941.e4.	4.5	99
43	Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death and Differentiation, 2018, 25, 1885-1904.	5.0	31
44	DYNLL1 binds to MRE11 to limit DNA end resection in BRCA1-deficient cells. Nature, 2018, 563, 522-526.	13.7	156
45	Prediction of DNA Repair Inhibitor Response in Short-Term Patient-Derived Ovarian Cancer Organoids. Cancer Discovery, 2018, 8, 1404-1421.	7.7	311
46	Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair, 2018, 71, 172-176.	1.3	334
47	A senataxin-associated exonuclease SAN1 is required for resistance to DNA interstrand cross-links. Nature Communications, 2018, 9, 2592.	5.8	18
48	Functional analysis of Fanconi anemia mutations in China. Experimental Hematology, 2018, 66, 32-41.e8.	0.2	15
49	Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncolmmunology, 2017, 6, e1277308.	2.1	84
50	DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discovery, 2017, 7, 675-693.	7.7	519
51	Aldehydes Pose a Threat to BRCA2 Mutation Carriers. Cell, 2017, 169, 979-981.	13.5	5
52	Fanconi anemia pathway. Current Biology, 2017, 27, R986-R988.	1.8	81
53	EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nature Cell Biology, 2017, 19, 1371-1378.	4.6	257
54	A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nature Genetics, 2017, 49, 1476-1486.	9.4	427

#	Article	IF	CITATIONS
55	Genomic Evolution after Chemoradiotherapy in Anal Squamous Cell Carcinoma. Clinical Cancer Research, 2017, 23, 3214-3222.	3.2	44
56	Allosteric Activation of Ubiquitin-Specific Proteases by β-Propeller Proteins UAF1 and WDR20. Molecular Cell, 2016, 63, 249-260.	4.5	54
57	Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer. Radiation Oncology, 2016, 11, 61.	1.2	97
58	The Fanconi anaemia pathway: new players and new functions. Nature Reviews Molecular Cell Biology, 2016, 17, 337-349.	16.1	562
59	Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nature Genetics, 2016, 48, 600-606.	9.4	352
60	Small Molecule Inhibition of the Ubiquitin-specific Protease USP2 Accelerates cyclin D1 Degradation and Leads to Cell Cycle Arrest in Colorectal Cancer and Mantle Cell Lymphoma Models. Journal of Biological Chemistry, 2016, 291, 24628-24640.	1.6	107
61	FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair. Cell Reports, 2016, 15, 2488-2499.	2.9	147
62	TGF-β Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell, 2016, 18, 668-681.	5.2	125
63	Repair Pathway Choices and Consequences at the Double-Strand Break. Trends in Cell Biology, 2016, 26, 52-64.	3.6	1,127
64	Biallelic inactivation of REV7 is associated with Fanconi anemia. Journal of Clinical Investigation, 2016, 126, 3580-3584.	3.9	107
65	PCNA-Dependent Cleavage and Degradation of SDE2 Regulates Response to Replication Stress. PLoS Genetics, 2016, 12, e1006465.	1.5	30
66	Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget, 2016, 7, 13587-13598.	0.8	485
67	A Unique Subset of Epithelial Ovarian Cancers with Platinum Sensitivity and PARP Inhibitor Resistance. Cancer Research, 2015, 75, 628-634.	0.4	104
68	Homologous-recombination-deficient tumours are dependent on Polî,-mediated repair. Nature, 2015, 518, 258-262.	13.7	671
69	Association of Polymerase e–Mutated and Microsatellite-Instable Endometrial Cancers With Neoantigen Load, Number of Tumor-Infiltrating Lymphocytes, and Expression of PD-1 and PD-L1. JAMA Oncology, 2015, 1, 1319.	3.4	523
70	USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1. Cancer Biology and Therapy, 2015, 16, 392-401.	1.5	29
71	Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discovery, 2015, 5, 1137-1154.	7.7	657
72	Nucleotide excision repair (NER) alterations as evolving biomarkers and therapeutic targets in epithelial cancers. Oncoscience, 2015, 2, 942-943.	0.9	14

#	Article	IF	CITATIONS
73	TGF-β Pathway Inhibition Rescues the Function of Hematopoietic Stem and Progenitor Cells Derived from Patients with Fanconi Anemia. Blood, 2015, 126, 297-297.	0.6	0
74	MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability. ELife, 2014, 3, e02445.	2.8	64
75	Somatic <i>ERCC2</i> Mutations Correlate with Cisplatin Sensitivity in Muscle-Invasive Urothelial Carcinoma. Cancer Discovery, 2014, 4, 1140-1153.	7.7	506
76	Ubiquitin recognition by FAAP20 expands the complex interface beyond the canonical UBZ domain. Nucleic Acids Research, 2014, 42, 13997-14005.	6.5	10
77	Transcriptional Repressor ZBTB1 Promotes Chromatin Remodeling and Translesion DNA Synthesis. Molecular Cell, 2014, 54, 107-118.	4.5	48
78	Crosstalk between the nucleotide excision repair and Fanconi anemia/BRCA pathways. DNA Repair, 2014, 19, 130-134.	1.3	27
79	The Carboxyl Terminus of FANCE Recruits FANCD2 to the Fanconi Anemia (FA) E3 Ligase Complex to Promote the FA DNA Repair Pathway. Journal of Biological Chemistry, 2014, 289, 7003-7010.	1.6	25
80	Bone Marrow Failure in Fanconi Anemia from Hyperactive TGF-Î ² Signaling. Blood, 2014, 124, 356-356.	0.6	0
81	HELQ promotes RAD51 paralogue-dependent repair to avert germ cell loss and tumorigenesis. Nature, 2013, 502, 381-384.	13.7	94
82	Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proceedings of the United States of America, 2013, 110, 17041-17046.	3.3	225
83	Synthetic lethality between <i>CCNE1</i> amplification and loss of <i>BRCA1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19489-19494.	3.3	201
84	BRCA1: A Missing Link in the Fanconi Anemia/BRCA Pathway. Cancer Discovery, 2013, 3, 376-378.	7.7	24
85	Proteasome Inhibitors Block DNA Repair and Radiosensitize Non-Small Cell Lung Cancer. PLoS ONE, 2013, 8, e73710.	1.1	47
86	The Fanconi Anemia Pathway Induces Senescence and Suppresses Tumorigenesis in Vivo. FASEB Journal, 2013, 27, lb400.	0.2	0
87	A DNA Repair Pathway–Focused Score for Prediction of Outcomes in Ovarian Cancer Treated With Platinum-Based Chemotherapy. Journal of the National Cancer Institute, 2012, 104, 670-681.	3.0	161
88	Targeting DNA repair and the cell cycle in glioblastoma. Journal of Neuro-Oncology, 2012, 107, 463-477.	1.4	32
89	Bactericidal/Permeability-Increasing Protein (rBPI ₂₁) and Fluoroquinolone Mitigate Radiation-Induced Bone Marrow Aplasia and Death. Science Translational Medicine, 2011, 3, 110ra118.	5.8	38
90	Hematopoietic Stem Cell Defects in Mice with Deficiency of Fancd2 or Usp1. Stem Cells, 2010, 28, 1186-1195.	1.4	96

#	Article	IF	CITATIONS
91	Susceptibility Pathways in Fanconi's Anemia and Breast Cancer. New England Journal of Medicine, 2010, 362, 1909-1919.	13.9	332
92	Targeting DNA repair pathways in AML. Best Practice and Research in Clinical Haematology, 2010, 23, 469-473.	0.7	19
93	Cytokinesis Failure In Fanconi Anemia Pathway Deficient Hematopoietic Cells. Blood, 2010, 116, 878-878.	0.6	23
94	Cytokinesis Failure in Fanconi Anemia Pathway Deficient Murine Hematopoietic Stem Cells Blood, 2009, 114, 495-495.	0.6	0
95	The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly. DNA Repair, 2008, 7, 902-911.	1.3	87
96	Hematopoietic Stem Cell Defects in Novel Fanconi Anemia Mouse Models. Blood, 2008, 112, 440-440.	0.6	1
97	Chk1-Mediated Phosphorylation of FANCE Is Required for the Fanconi Anemia/BRCA Pathway. Molecular and Cellular Biology, 2007, 27, 3098-3108.	1.1	132
98	The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents. Journal of Molecular Medicine, 2007, 85, 497-509.	1.7	74
99	Dedicated to the core: Understanding the Fanconi anemia complex. DNA Repair, 2006, 5, 1119-1125.	1.3	54
100	Modifier Genetics in Zebrafish Identify Chk1 and an Associated Survival Pathway as Targets for Pharmacotherapy of MDS/AML with P53 Mutations Blood, 2006, 108, 1432-1432.	0.6	0
101	Functional Interaction between FANCD2 and ATM in the DNA Damage Response Blood, 2005, 106, 181-181.	0.6	0
102	The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair, 2004, 3, 1063-1069.	1.3	62
103	Monoubiquitinated FANCD2 Is Both Necessary and Sufficient for Mitomycin C Resistance in the Absence of a Functional Fanconi Anemia Core Complex Blood, 2004, 104, 722-722.	0.6	0
104	Fanconi anemia. Current Biology, 2003, 13, R546.	1.8	9
105	Regulation of the Fanconi anemia pathway by monoubiquitination. Seminars in Cancer Biology, 2003, 13, 77-82.	4.3	66
106	Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors. Nature Medicine, 2003, 9, 568-574.	15.2	508
107	The Fanconi anaemia/BRCA pathway. Nature Reviews Cancer, 2003, 3, 23-34.	12.8	764
108	The Fanconi road to cancer. Genes and Development, 2003, 17, 1933-1936.	2.7	91

#	Article	IF	CITATIONS
109	Diamond-Blackfan anemia and nucleolar transport. Blood, 2003, 101, 4650-4651.	0.6	Ο
110	Reply to "Involvement of oxidative stress in Fanconi's anaemia: from phenotype to FA protein functionsâ€: Nature Reviews Cancer, 2003, 3, 78-78.	12.8	0
111	The Fanconi Anemia/BRCA signaling pathway: disruption in cisplatin-sensitive ovarian cancers. Cell Cycle, 2003, 2, 290-2.	1.3	36
112	Biallelic Inactivation of BRCA2 in Fanconi Anemia. Science, 2002, 297, 606-609.	6.0	1,072
113	Molecular Pathogenesis of Fanconi Anemia. International Journal of Hematology, 2002, 75, 123-128.	0.7	36
114	Cellular function of the Fanconi anemia pathway. Nature Medicine, 2001, 7, 1259-1259.	15.2	13
115	The Fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. Blood, 2000, 96, 3224-3230.	0.6	117
116	Nuclear Localization of the Fanconi Anemia Protein FANCC Is Required for Functional Activity. Blood, 1999, 93, 4025-4026.	0.6	20
117	Regulated Binding of the Fanconi Anemia Proteins, FANCA and FANCC. Blood, 1999, 93, 1430-1432.	0.6	15
118	Regulated Binding of the Fanconi Anemia Proteins, FANCA and FANCC. Blood, 1999, 93, 1430-1432.	0.6	1
119	Deubiquitinating Enzymes: A New Class of Biological Regulators. Critical Reviews in Biochemistry and Molecular Biology, 1998, 33, 337-352.	2.3	238
120	Cloning and Functional Analysis of Erythropoietin‐, Interleukin‐3‐and Thrombopoietin‐Inducible Genes. Stem Cells, 1996, 14, 82-87.	1.4	2
121	Erythropoietin receptor: Cloning strategy and structural features. International Journal of Cell Cloning, 1990, 8, 173-180.	1.6	19
122	Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature, 1989, 339, 446-451.	13.7	941
123	DNA repair inhibition in anti-cancer therapeutics. , 0, , 936-944.		0
124	#GeneticTesting: Using Social Media to Facilitate Communication about testing to Women (Preprint). JMIR Formative Research, 0, , .	0.7	3