Christian Mawrin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5591259/publications.pdf

Version: 2024-02-01

66911 109321 7,134 77 35 78 citations h-index g-index papers 81 81 81 8578 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	27.8	1,872
2	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
3	DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncology, The, 2017, 18, 682-694.	10.7	586
4	Pathological classification and molecular genetics of meningiomas. Journal of Neuro-Oncology, 2010, 99, 379-391.	2.9	355
5	TERT Promoter Mutations and Risk of Recurrence in Meningioma. Journal of the National Cancer Institute, 2016, 108, djv377.	6.3	283
6	Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathologica, 2013, 126, 907-915.	7.7	254
7	EANO guideline on the diagnosis and management of meningiomas. Neuro-Oncology, 2021, 23, 1821-1834.	1.2	230
8	Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathologica, 2013, 125, 351-358.	7.7	208
9	Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathologica, 2016, 131, 903-910.	7.7	203
10	Advances in meningioma genetics: novel therapeutic opportunities. Nature Reviews Neurology, 2018, 14, 106-115.	10.1	148
11	CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas. Acta Neuropathologica, 2020, 140, 409-413.	7.7	116
12	Different Activation of Mitogen-Activated Protein Kinase and Akt Signaling Is Associated with Aggressive Phenotype of Human Meningiomas. Clinical Cancer Research, 2005, 11, 4074-4082.	7.0	114
13	Diffusion-Weighted Imaging in Meningioma: Prediction of Tumor Grade and Association with Histopathological Parameters. Translational Oncology, 2015, 8, 517-523.	3.7	105
14	Imaging and diagnostic advances for intracranial meningiomas. Neuro-Oncology, 2019, 21, i44-i61.	1.2	100
15	Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated. Journal of Clinical Oncology, 2021, 39, 3839-3852.	1.6	93
16	Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis, 2006, 27, 664-671.	2.8	89
17	AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry. Acta Neuropathologica, 2013, 126, 757-762.	7.7	88
18	Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas. Journal of Neuro-Oncology, 2015, 122, 313-320.	2.9	87

#	Article	IF	Citations
19	mTORC1 Inhibitors Suppress Meningioma Growth in Mouse Models. Clinical Cancer Research, 2013, 19, 1180-1189.	7.0	85
20	Review: Iron metabolism and the role of iron in neurodegenerative disorders. Neuropathology and Applied Neurobiology, 2014, 40, 240-257.	3.2	76
21	Immunohistochemical and molecular analysis of p53, RB, and PTEN in malignant peripheral nerve sheath tumors. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2002, 440, 610-615.	2.8	70
22	Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro-Oncology, 2017, 19, 1088-1096.	1.2	69
23	miRNA-145 is downregulated in atypical and anaplastic meningiomas and negatively regulates motility and proliferation of meningioma cells. Oncogene, 2013, 32, 4712-4720.	5.9	60
24	Brain invasion in meningiomasâ€"clinical considerations and impact of neuropathological evaluation: a systematic review. Neuro-Oncology, 2017, 19, 1298-1307.	1.2	58
25	Yes-Associated Protein 1 Is Activated and Functions as an Oncogene in Meningiomas. Molecular Cancer Research, 2012, 10, 904-913.	3.4	57
26	MMP-13, p53 in the Progression of Malignant Peripheral Nerve Sheath Tumors. Neoplasia, 2007, 9, 671-677.	5.3	53
27	Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience, 2013, 230, 94-101.	2.3	51
28	Sunitinib targets PDGF-receptor and Flt3 and reduces survival and migration of human meningioma cells. European Journal of Cancer, 2012, 48, 1831-1841.	2.8	49
29	YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathologica, 2020, 139, 215-218.	7.7	45
30	Loss of H3K27me3 in meningiomas. Neuro-Oncology, 2021, 23, 1282-1291.	1.2	45
31	The mTOR signaling pathway as a treatment target for intracranial neoplasms. Neuro-Oncology, 2015, 17, 189-199.	1.2	44
32	The Integrin Inhibitor Cilengitide Affects Meningioma Cell Motility and Invasion. Clinical Cancer Research, 2013, 19, 5402-5412.	7.0	42
33	Loss of the Proteinâ€Tyrosine Phosphatase DEPâ€1/PTPRJ Drives Meningioma Cell Motility. Brain Pathology, 2011, 21, 405-418.	4.1	41
34	Cytotoxic effect of different statins and thiazolidinediones on malignant glioma cells. Cancer Chemotherapy and Pharmacology, 2011, 67, 1193-1201.	2.3	39
35	PDGF activation in PGDS-positive arachnoid cells induces meningioma formation in mice promoting tumor progression in combination with <i>Nf2</i> and <i>Cdkn2ab</i> loss. Oncotarget, 2015, 6, 32713-32722.	1.8	35
36	Distinct Histomorphology in Molecular Subgroups of Glioblastomas in Young Patients. Journal of Neuropathology and Experimental Neurology, 2016, 75, 408-414.	1.7	35

#	Article	IF	Citations
37	Clear cell meningiomas are defined by a highly distinct DNA methylation profile and mutations in SMARCE1. Acta Neuropathologica, 2021, 141, 281-290.	7.7	31
38	Fatty acid synthase as a novel target for meningioma therapy. Neuro-Oncology, 2010, 12, 844-854.	1.2	30
39	Patterns of SPARC expression and basement membrane intactness at the tumour?brain border of invasive meningiomas. Neuropathology and Applied Neurobiology, 2006, 32, 525-531.	3.2	29
40	Reduced Activity of CD13/Aminopeptidase N (APN) in Aggressive Meningiomas Is Associated with Increased Levels of SPARC. Brain Pathology, 2010, 20, 200-210.	4.1	29
41	Invited Review: The spectrum of ageâ€related small vessel diseases: potential overlap and interactions of amyloid and nonamyloid vasculopathies. Neuropathology and Applied Neurobiology, 2020, 46, 219-239.	3.2	29
42	Increased expression of avian erythroblastosis virus E26 oncogene homolog 1 in World Health Organization grade 1 meningiomas is associated with an elevated risk of recurrence and is correlated with the expression of its target genes matrix metalloproteinase-2 and MMP-9. Cancer, 2006, 107, 1365-1372.	4.1	28
43	Receptor tyrosine kinase inhibition by regorafenib/sorafenib inhibits growth and invasion of meningioma cells. European Journal of Cancer, 2017, 73, 9-21.	2.8	27
44	Biology and Clinical Management Challenges in Meningioma. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e106-e115.	3.8	26
45	Genome wide expression profiling identifies specific deregulated pathways in meningioma. International Journal of Cancer, 2009, 124, 346-351.	5.1	25
46	KLF4K409Q–mutated meningiomas show enhanced hypoxia signaling and respond to mTORC1 inhibitor treatment. Acta Neuropathologica Communications, 2020, 8, 41.	5.2	25
47	Altered expression of E-Cadherin-related transcription factors indicates partial epithelial-mesenchymal transition in aggressive meningiomas. Journal of the Neurological Sciences, 2017, 380, 112-121.	0.6	24
48	The astrocytic response towards invasive meningiomas. Neuropathology and Applied Neurobiology, 2007, 33, 163-168.	3.2	23
49	Repetitive Transcorneal Alternating Current Stimulation Reduces Brain Idling State After Long-term Vision Loss. Brain Stimulation, 2015, 8, 1065-1073.	1.6	16
50	Cytotoxic effects of statins and thiazolidinediones on meningioma cells. Journal of Neuro-Oncology, 2011, 102, 383-393.	2.9	14
51	Re-evaluation of cytostatic therapies for meningiomas in vitro. Journal of Cancer Research and Clinical Oncology, 2014, 140, 1343-1352.	2.5	14
52	An integrative correlation of myopathology, phenotype and genotype in late onset Pompe disease. Neuropathology and Applied Neurobiology, 2020, 46, 359-374.	3.2	13
53	Primary pineal malignant melanoma with B-Raf V600E mutation: a case report and brief review of the literature. Acta Neurochirurgica, 2015, 157, 1267-1270.	1.7	12
54	Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathologica, 2021, 142, 873-886.	7.7	12

#	Article	IF	CITATIONS
55	Novel chromosomal aberrations in a recurrent malignant meningioma. Cancer Genetics and Cytogenetics, 2007, 174, 48-53.	1.0	11
56	Mitoferrin-1 is required for brain energy metabolism and hippocampus-dependent memory. Neuroscience Letters, 2019, 713, 134521.	2.1	11
57	Molecular neuropathology of brainâ€invasive meningiomas. Brain Pathology, 2022, 32, e13048.	4.1	11
58	Crispr/Cas-based modeling of NF2 loss in meningioma cells. Journal of Neuroscience Methods, 2021, 356, 109141.	2.5	10
59	JUNE 2004: A MALE IN HIS LATE 60s WITH RECURRENT EXTRAâ€CEREBRAL TUMOR. Brain Pathology, 2004, 14, 457-459.	4.1	8
60	Ependymoma relapse goes along with a relatively stable epigenome, but a severely altered tumor morphology. Brain Pathology, 2021, 31, 33-44.	4.1	8
61	<i>AKT1</i> ^{E17K} â€mutated meningioma cell lines respond to treatment with the AKT inhibitor AZD5363. Neuropathology and Applied Neurobiology, 2022, 48, e12780.	3.2	8
62	Loss of PTPRJ/DEP-1 enhances NF2/Merlin-dependent meningioma development. Journal of the Neurological Sciences, 2020, 408, 116553.	0.6	7
63	Two Pituitary Neuroendocrine Tumors (PitNETs) with Very High Proliferation and TP53 Mutation — High-Grade PitNET or PitNEC?. Endocrine Pathology, 2022, 33, 257-262.	9.0	7
64	A new ampliconâ€based gene panel for next generation sequencing characterization of meningiomas. Brain Pathology, 2022, 32, e13046.	4.1	7
65	ASA404, a vascular disrupting agent, as an experimental treatment approach for brain tumors. Oncology Letters, 2017, 14, 5443-5451.	1.8	6
66	Lhermitte-Duclos disease caused by a novel germlinePTENmutation R173P in a patient presenting with psychosis. Neuropathology and Applied Neurobiology, 2010, 36, 86-89.	3.2	5
67	Critical role of PTEN for development and progression of nerve sheath tumors in neurofibromatosis type 1. Future Oncology, 2010, 6, 499-501.	2.4	5
68	Deficiency of the protein-tyrosine phosphatase DEP-1/PTPRJ promotes matrix metalloproteinase-9 expression in meningioma cells. Journal of Neuro-Oncology, 2015, 122, 451-459.	2.9	5
69	Diagnostic and therapeutic challenges in extragonadal yolk sac tumor with hepatoid differentiation: A case report. Molecular and Clinical Oncology, 2017, 6, 79-82.	1.0	5
70	MRI phenotyping of underlying cerebral small vessel disease in mixed hemorrhage patients. Journal of the Neurological Sciences, 2020, 419, 117173.	0.6	5
71	The expression of the MSC-marker CD73 and of NF2/Merlin are correlated in meningiomas. Journal of Neuro-Oncology, 2018, 138, 251-259.	2.9	4
72	Clinical Characteristics and Magnetic Resonance Imaging–Based Prediction of the KLF4 Mutation in Meningioma. World Neurosurgery, 2021, 154, e665-e670.	1.3	3

#	Article	IF	CITATIONS
73	Quantitative susceptibility mapping in the thalamus and basal ganglia of systemic lupus erythematosus patients with neuropsychiatric complaints. NeuroImage: Clinical, 2021, 30, 102637.	2.7	2
74	Introduction to the miniâ€symposium "molecular neuropathology of meningioma― Brain Pathology, 2022, 32, e13055.	4.1	2
75	Rapid development of an atypical meningioma during Nivolumab therapy for metastatic renal cell carcinoma. Clinical Neurology and Neurosurgery, 2020, 195, 105938.	1.4	1
76	Looking for the needle in the haystack: Proteome-based identification of treatment targets in NF2 -related nervous system tumors. EBioMedicine, 2017, 16, 6-7.	6.1	0
77	Frequency of actionable molecular drivers in lung cancer patients with precocious brain metastases. Clinical Neurology and Neurosurgery, 2021, 208, 106841.	1.4	0