Zhaoning Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5591142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Templated Growth and Passivation of Vertically Oriented Antimony Selenide Thin Films for Highâ€Efficiency Solar Cells in Substrate Configuration. Advanced Functional Materials, 2022, 32, 2110032.	7.8	40
2	Bio-sensitized solar cells built from renewable carbon sources. Materials Today Energy, 2022, 23, 100910.	2.5	7
3	Urbach Energy and Open-Circuit Voltage Deficit for Mixed Anion–Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 7796-7804.	4.0	53
4	Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability. Advanced Materials, 2022, 34, e2106805.	11.1	31
5	Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustainable Energy and Fuels, 2022, 6, 2718-2726.	2.5	11
6	Optical and Electronic Losses Arising from Physically Mixed Interfacial Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 4923-4934.	4.0	14
7	Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Science Advances, 2021, 7, .	4.7	41
8	Influence of Post-selenization Temperature on the Performance of Substrate-Type Sb ₂ Se ₃ Solar Cells. ACS Applied Energy Materials, 2021, 4, 4313-4318.	2.5	32
9	Enabling bifacial thin film devices by developing a back surface field using CuxAlOy. Nano Energy, 2021, 83, 105827.	8.2	32
10	Temperature-dependency of ferroelectric behavior in CH3NH3PbI3 perovskite films measured by the Sawyer–Tower method. MRS Advances, 2021, 6, 613-617.	0.5	1
11	Life Cycle Assessment of Perovskite/Silicon Tandem Solar Cells Coupled with Solar Flow Battery Systems. , 2021, , .		1
12	On the design and performance of InGaN/Si double-junction photocathodes. Applied Physics Letters, 2021, 118, .	1.5	6
13	Fabricating Efficient CdTe Solar Cells: The Effect of Cu Precursor. , 2021, , .		2
14	Optimizing the Selenization of Sb2Se3 Absorbers to Improve the Film Quality and Solar Cell Performances. , 2021, , .		0
15	Mitigating ion migration in perovskite solar cells. Trends in Chemistry, 2021, 3, 575-588.	4.4	81
16	Protecting Perovskite Solar Cells against Moisture-Induced Degradation with Sputtered Inorganic Barrier Layers. ACS Applied Energy Materials, 2021, 4, 7571-7578.	2.5	20
17	Impact of Humidity and Temperature on the Stability of the Optical Properties and Structure of MAPbI3, MA0.7FA0.3PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 Perovskite Thin Films. Materials, 2021, 14, 4054.	1.3	10
18	Effects of Cu Precursor on the Performance of Efficient CdTe Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 38432-38440.	4.0	15

#	Article	IF	CITATIONS
19	Optical properties of thin film Sb2Se3 and identification of its electronic losses in photovoltaic devices. Solar Energy, 2021, 228, 38-44.	2.9	11
20	Assessing the true power of bifacial perovskite solar cells under concurrent bifacial illumination. Sustainable Energy and Fuels, 2021, 5, 2865-2870.	2.5	17
21	Interface modification of sputtered NiO _x as the hole-transporting layer for efficient inverted planar perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 1972-1980.	2.7	66
22	High Remaining Factors in the Photovoltaic Performance of Perovskite Solar Cells after High-Fluence Electron Beam Irradiations. Journal of Physical Chemistry C, 2020, 124, 1330-1336.	1.5	30
23	Charge Compensating Defects in Methylammonium Lead Iodide Perovskite Suppressed by Formamidinium Inclusion. Journal of Physical Chemistry Letters, 2020, 11, 121-128.	2.1	15
24	Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5, 768-776.	19.8	165
25	Environmental Impact per Energy Yield for Bifacial Perovskite Solar Cells Outperforms Crystalline Silicon Solar Cells. Cell Reports Physical Science, 2020, 1, 100216.	2.8	11
26	Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy and Environmental Science, 2020, 13, 4057-4086.	15.6	241
27	Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed Ion Migration. ACS Energy Letters, 2020, 5, 2560-2568.	8.8	131
28	InGaN/Si Double-Junction Photocathode for Unassisted Solar Water Splitting. ACS Energy Letters, 2020, 5, 3741-3751.	8.8	49
29	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	6.6	103
30	Emerging Photovoltaic (PV) Materials for a Low Carbon Economy. Energies, 2020, 13, 4131.	1.6	14
31	CuSCN as the Back Contact for Efficient ZMO/CdTe Solar Cells. Materials, 2020, 13, 1991.	1.3	13
32	Coherent band-edge oscillations and dynamic longitudinal-optical phonon mode splitting as evidence for polarons in perovskites. Physical Review B, 2020, 101, .	1.1	18
33	Sputtered indium tin oxide as a recombination layer formed on the tunnel oxide/poly-Si passivating contact enabling the potential of efficient monolithic perovskite/Si tandem solar cells. Solar Energy Materials and Solar Cells, 2020, 210, 110482.	3.0	33
34	Decreasing the resolution limit of laser beam induced current measurements below the beam size without confocal optics: Determining laser scribe widths. Solar Energy Materials and Solar Cells, 2020, 215, 110660.	3.0	1
35	Very high V _{OC} and FF of CdTe thinâ€film solar cells with the applications of organoâ€metallic halide perovskite thin film as a hole transport layer. Progress in Photovoltaics: Research and Applications, 2020, 28, 1024-1033.	4.4	8
36	Solutionâ€Processed Highâ€Quality Cesium Lead Bromine Perovskite Photodetectors with High Detectivity for Application in Visible Light Communication. Advanced Optical Materials, 2020, 8, 1901735.	3.6	38

#	Article	IF	CITATIONS
37	Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells. Joule, 2020, 4, 644-657.	11.7	69
38	Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnI3) <i>x</i> (MAPbI3)1â~' <i>x</i> perovskite films and solar cells. Journal of Chemical Physics, 2020, 152, 064705.	1.2	26
39	Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10588-10596.	4.0	27
40	Maximize CdTe solar cell performance through copper activation engineering. Nano Energy, 2020, 73, 104835.	8.2	35
41	Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mrow><mm Physical Review Letters. 2020. 124. 157401.</mm </mml:mrow></mml:msub></mml:mrow></mml:math>	11:min>3 </td <td>mml:mn></td>	mml:mn>
42	Cryogenic spatial–temporal imaging of surface photocarrier dynamics in MAPbI3 films at the single grain level. AIP Advances, 2020, 10, .	0.6	2
43	Solution Processed CuCl treatment for efficient CdS/CdTe Solar Cells. , 2020, , .		1
44	Lead-Free Metal Halide Perovskites for Solar Cell Applications: A Theoretical Perspective. , 2020, , .		0
45	21.1% Efficient Space Perovskite/Si Four-Terminal Tandem Solar Cells. , 2020, , .		3
46	Dithieno[3,2â€b:2′,3′â€d]pyrrolâ€Cored Hole Transport Material Enabling Over 21% Efficiency Dopantâ€F Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1904300.	ree 7.8	114
47	Dithieno[3,2â€b:2′,3′â€d]pyrrole Cored pâ€Type Semiconductors Enabling 20 % Efficiency Dopantâ€ Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 13717-13721.	Free Perov 7.2	skite 108
48	Dithieno[3,2â€b:2′,3′â€d]pyrrole Cored pâ€Type Semiconductors Enabling 20 % Efficiency Dopantâ€ Solar Cells. Angewandte Chemie, 2019, 131, 13855-13859.	Free Perov 1.6	skite 16
49	Bacteriorhodopsin Enhances Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 30728-30734.	4.0	30
50	Optical Properties of Bacteriorhodopsin–Gold Bionano Interfaces. Journal of Physical Chemistry C, 2019, 123, 26516-26521.	1.5	1
51	Influences of buffer material and fabrication atmosphere on the electrical properties of CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 1115-1123.	4.4	24
52	Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit. Advanced Science, 2019, 6, 1801704.	5.6	80
53	A Cu ₃ PS ₄ nanoparticle hole selective layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4604-4610.	5.2	29
54	Irradiance and temperature considerations in the design and deployment of high annual energy yield perovskite/CIGS tandems. Sustainable Energy and Fuels, 2019, 3, 1841-1851.	2.5	30

#	Article	IF	CITATIONS
55	Wide-bandgap, low-bandgap, and tandem perovskite solar cells. Semiconductor Science and Technology, 2019, 34, 093001.	1.0	89
56	Probing Biophysicochemical Interactions at Nano-Bio Interface of Perovskite Tandem Biosolar Cells. Biophysical Journal, 2019, 116, 577a.	0.2	1
57	Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364, 475-479.	6.0	781
58	Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy, 2019, 61, 141-147.	8.2	152
59	Low-reflection, (110)-orientation-preferred CsPbBr ₃ nanonet films for application in high-performance perovskite photodetectors. Nanoscale, 2019, 11, 9302-9309.	2.8	38
60	Eliminating S-Kink To Maximize the Performance of MgZnO/CdTe Solar Cells. ACS Applied Energy Materials, 2019, 2, 2896-2903.	2.5	60
61	Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers. Solar Rrl, 2019, 3, 1900078.	3.1	40
62	From Lead Halide Perovskites to Leadâ€Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials, 2019, 31, e1803792.	11.1	621
63	Lowâ€Bandgap Mixed Tin‣ead Perovskites and Their Applications in Allâ€Perovskite Tandem Solar Cells. Advanced Functional Materials, 2019, 29, 1808801.	7.8	133
64	Operando Microscopy Characterization of Perovskite Solar Cells. , 2019, , .		1
65	ZnTe Back Buffer Layer to Enhance the Efficiency of CdS/CdTe Solar Cells. , 2019, , .		5
66	Cost analysis of thin film tandem solar cells using real world energy yield modelling. , 2019, , .		0
67	Get rid of S-kink in MZO/CdTe Solar Cells by Performing CdCl ₂ Annealing without Oxygen. , 2019, , .		2
68	Effects of Fabrication Atmosphere on Bulk and Back Interface Defects of CdTe Solar Cells with CdS and MgZnO Buffers. , 2019, , .		1
69	Monolithic Two-Terminal All-Perovskite Tandem Solar Cells with Power Conversion Efficiency Exceeding 21%. , 2019, , .		3
70	Helicity-dependent terahertz photocurrent and phonon dynamics in hybrid metal halide perovskites. Journal of Chemical Physics, 2019, 151, 244706.	1.2	16
71	Reducing Saturation urrent Density to Realize Highâ€Efficiency Lowâ€Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803135.	10.2	255
72	The Effects of Hydrogen Iodide Back Surface Treatment on CdTe Solar Cells. Solar Rrl, 2019, 3, 1800304.	3.1	29

#	Article	IF	CITATIONS
73	Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors with High Detectivity. Journal of Physical Chemistry Letters, 2018, 9, 2043-2048.	2.1	123
74	Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23%. ACS Energy Letters, 2018, 3, 305-306.	8.8	219
75	Double Coating for the Enhancement of the Performance in a MA _{0.7} FA _{0.3} PbBr ₃ Photodetector. ACS Photonics, 2018, 5, 2100-2105.	3.2	9
76	Enhanced Grain Size and Crystallinity in CH3NH3PbI3 Perovskite Films by Metal Additives to the Single-Step Solution Fabrication Process. MRS Advances, 2018, 3, 3237-3242.	0.5	26
77	Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy, 2018, 49, 346-353.	8.2	130
78	Life cycle analysis of metals in emerging photovoltaic (PV) technologies: A modeling approach to estimate use phase leaching. Journal of Cleaner Production, 2018, 186, 632-639.	4.6	33
79	Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells. Materials Today Energy, 2018, 7, 232-238.	2.5	31
80	Energy Payback Time (EPBT) and Energy Return on Energy Invested (EROI) of Perovskite Tandem Photovoltaic Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 305-309.	1.5	58
81	A Review of China's PV-Generated Electricity Pricing Policy. , 2018, , .		0
82	Electrical Impedance Characterization of CdTe Thin Film Solar Cells with Hydrogen Iodide Back Surface Etching. , 2018, , .		2
83	Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3, 1093-1100.	19.8	422
84	Impact of Epoxy Encapsulation on Device Stability of Large- Area Laser-Patterned Perovskite Solar Cells. , 2018, , .		2
85	Modeling the Performance of CdTe Solar Cells with a CH <inf>3</inf> NH <inf>3</inf> Pb(I <inf>1-X</inf> Br <inf>X</inf>) <inf -like Back Buffer Layer. , 2018, , .</inf 	>3 <td>nfi></td>	nfi>
86	Manufacturing Cost Analysis of Perovskite Solar Modules in Single-Junction and All-Perovskite Tandem Configurations. , 2018, , .		11
87	Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6312-6320.	2.1	56
88	Self-powered CsPbBr3 nanowire photodetector with a vertical structure. Nano Energy, 2018, 53, 880-886.	8.2	104
89	Optical design of perovskite solar cells for applications in monolithic tandem configuration with CuInSe2 bottom cells. MRS Advances, 2018, 3, 3111-3119.	0.5	13

90 Evolution of Perovskite Solar Cells. , 2018, , 43-88.

#	Article	IF	CITATIONS
91	Pressure-Assisted Annealing Strategy for High-Performance Self-Powered All-Inorganic Perovskite Microcrystal Photodetectors. Journal of Physical Chemistry Letters, 2018, 9, 4714-4719.	2.1	50
92	Band Tail Engineering in Kesterite Cu ₂ ZnSn(S,Se) ₄ Thin-Film Solar Cells with 11.8% Efficiency. Journal of Physical Chemistry Letters, 2018, 9, 4555-4561.	2.1	59
93	Nanocomposite (CuS) (ZnS)1 thin film back contact for CdTe solar cells: Toward a bifacial device. Solar Energy Materials and Solar Cells, 2018, 186, 227-235.	3.0	30
94	Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2435-2441.	2.5	27
95	Binary hole transport materials blending to linearly tune HOMO level for high efficiency and stable perovskite solar cells. Nano Energy, 2018, 51, 680-687.	8.2	59
96	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	2.5	84
97	Selective Cd Removal From CdTe for High-Efficiency Te Back-Contact Formation. IEEE Journal of Photovoltaics, 2018, 8, 1125-1131.	1.5	24
98	A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy and Environmental Science, 2017, 10, 1297-1305.	15.6	438
99	Impact of Divalent Metal Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite Prepared by the Two-Step Solution Process. MRS Advances, 2017, 2, 1183-1188.	0.5	8
100	Enhanced Grain Size, Photoluminescence, and Photoconversion Efficiency with Cadmium Addition during the Two-Step Growth of CH ₃ NH ₃ PbI ₃ . ACS Applied Materials & Interfaces, 2017, 9, 2334-2341.	4.0	45
101	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	5.2	40
102	Water Vapor Treatment of Low-Temperature Deposited SnO ₂ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2118-2124.	8.8	161
103	Imaging the Spatial Evolution of Degradation in Perovskite/Si Tandem Solar Cells After Exposure to Humid Air. IEEE Journal of Photovoltaics, 2017, 7, 1563-1568.	1.5	14
104	Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration. Energy and Environmental Science, 2017, 10, 1874-1884.	15.6	104
105	High-Yield Production of Fatty Nitriles by One-Step Vapor-Phase Thermocatalysis of Triglycerides. ACS Omega, 2017, 2, 9013-9020.	1.6	28
106	CdS _{1-x} Se _x Window Layer for CdTe Prepared by the Exchange of S with Se in CdS Films. , 2017, , .		0
107	Applications of hybrid organic-inorganic metal halide perovskite thin film as a hole transport layer in CdTe thin film solar cells. , 2017, , .		7
108	Influence of Mono- and Di-valent Metal Additives on Morphology and Charge Carrier Dynamics of CH3NH3PbI3Perovskite. , 2017, , .		1

7

#	Article	IF	CITATIONS
109	Novel, Facile Back Surface Treatment for CdTe Solar Cells. , 2017, , .		2
110	Use of Single Wall Carbon Nanotube films doped with Triethyloxonium Hexachlorantimonate as a Transparent Back Contact for CdTe Solar Cells. , 2017, , .		2
111	High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules. Review of Scientific Instruments, 2016, 87, 093708.	0.6	20
112	Investigation on the nucleation and growth mechanisms of perovskite formation in the two-step solution process. , 2016, , .		6
113	In-situ observation of moisture-induced degradation of perovskite solar cells using laser-beam induced current. , 2016, , .		12
114	Life cycle toxicity analysis of emerging PV cells. , 2016, , .		2
115	RF-sputtered Cd <inf>2</inf> SnO <inf>4</inf> for flexible glass CdTe solar cells. , 2016, , .		3
116	Substrate configuration, bifacial CdTe solar cells grown directly on transparent single wall carbon nanotube back contacts. Solar Energy Materials and Solar Cells, 2016, 157, 35-41.	3.0	17
117	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016, 6, 022001.	0.8	218
118	Life Cycle Assessment (LCA) of perovskite PV cells projected from lab to fab. Solar Energy Materials and Solar Cells, 2016, 156, 157-169.	3.0	168
119	Probing Photocurrent Nonuniformities in the Subcells of Monolithic Perovskite/Silicon Tandem Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 5114-5120.	2.1	22
120	Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI ₂ â€CH ₃ NH ₃ Iâ€H ₂ O System. Advanced Energy Materials, 2016, 6, 1600846.	10.2	355
121	Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers. Applied Physics Letters, 2015, 107, 253901.	1.5	6
122	Carbon nanotube reinforced cu metal matrix composites for current collection from space photovoltaics. , 2015, , .		2
123	Evolution of the optical response of sputtered CdS:O as a function of temperature. , 2015, , .		0
124	Spatially resolved characterization of solution processed perovskite solar cells using the LBIC technique. , 2015, , .		3
125	Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 2015, 27, 4612-4619.	3.2	212
126	Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping. Proceedings of SPIE, 2015, , .	0.8	9

#	Article	IF	CITATIONS
127	Spray pyrolysis of semi-transparent backwall superstrate CuIn(S,Se) <inf>2</inf> solar cells. , 2014, , .		4
128	The Effect of Substrate Wettability on Hydrazine-Processed CZTS Thin Films. Materials Research Society Symposia Proceedings, 2014, 1648, 1.	0.1	0
129	Spray Pyrolysis of Culn(S,Se) ₂ Thin Films Using Hydrazine-based Solutions. Materials Research Society Symposia Proceedings, 2014, 1630, 1.	0.1	3
130	Semiconducting carbon single-walled nanotubes as a cu-free, barrier-free back contact for CdTe solar cell. , 2014, , .		6
131	Properties of Silicon Quantum Dots Embedded in Silicon Nitride Deposited by Magnetron Co-Sputtering. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 534-537.	0.1	2
132	Wiring-up Carbon Single Wall Nanotubes to Polycrystalline Inorganic Semiconductor Thin Films: Low-Barrier, Copper-Free Back Contact to CdTe Solar Cells. Nano Letters, 2013, 13, 5224-5232.	4.5	63
133	Synthesis of single-phase Cu <inf>2</inf> ZnSnS <inf>4</inf> thin films by ultrasonic spray pyrolysis. , 2013, , .		2
134	Density behaviors of Ge nanodots self-assembled by ion beam sputtering deposition. Chinese Physics B, 2013, 22, 058104.	0.7	2
135	The performance of nanocrystalline CuInS <inf>2</inf> /In <inf>2</inf> S <inf>3</inf> /SnO <inf>2</inf> heterojunction solar cells prepared by chemical spray pyrolysis. , 2013, , .		0
136	Plasma treatment to improve amorphous silicon solar cell's performance. , 2013, , .		0
137	CdTe/CdS thin film solar cells in the substrate configuration on a single-wall carbon nanotube back contact. , 2013, , .		1