Karen Lozano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5591042/publications.pdf

Version: 2024-02-01

128	6,182	34	76
papers	citations	h-index	g-index
130	130	130	7458
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermal conductivity of hybrid multilayer graphene-fiber carbon membranes. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2115-2123.	2.0	2
2	Enhanced piezoelectric performance of aligned PVDF electrospun fiber mats. Emergent Materials, 2022, 5, 187-193.	3.2	3
3	Efficient near infrared to visible light upconversion from Er/Yb codoped PVDF fibrous mats synthesized using a direct polymer doping technique. Optical Materials, 2022, 123, 111866.	1.7	6
4	On the thermogravimetric analysis of polymers: Polyethylene oxide powder and nanofibers. Journal of Applied Polymer Science, 2022, 139, 52055.	1.3	4
5	Development of zinc oxide/hydroxyapatite/poly(D,L-lactic acid) fibrous scaffold for tissue engineering applications. Materials Science and Engineering C, 2022, 133, 112594.	3.8	7
6	Advances in Melt Blowing Process Simulations. Industrial & Engineering Chemistry Research, 2022, 61, 65-85.	1.8	7
7	PVDF-Fe3O4 nanocomposites: spectroscopic investigations. Journal of Polymer Research, 2022, 29, 1.	1.2	1
8	High pressure responsive luminescence of flexible Eu3+ doped PVDF fibrous mats. Journal of Materials Science and Technology, 2021, 66, 103-111.	5 . 6	17
9	Bright and persistent green and red light-emitting fine fibers: A potential candidate for smart textiles. Journal of Luminescence, 2021, 231, 117760.	1.5	11
10	Fabrication of Forcespinning \hat{A}^{\otimes} nanofibers incorporating nopal extract. Polymer International, 2021, 70, 679-686.	1.6	9
11	Centrifugally spun mats based on biopolyesters/hydroxyapatite and their potential as bone scaffolds. Journal of Applied Polymer Science, 2021, 138, app50139.	1.3	5
12	Rare earth free bright and persistent white light emitting zinc gallo-germanate nanosheets: technological advancement to fibers with enhanced quantum efficiency. Materials Advances, 2021, 2, 4058-4067.	2.6	13
13	Carbon Fibers Coated with Ternary Ni–Co–Se Alloy Particles as a Low-Cost Counter Electrode for Flexible Dye Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 870-878.	2.5	22
14	Piezoelectric properties of <scp>PVDFâ€conjugated</scp> polymer nanofibers. Journal of Applied Polymer Science, 2021, 138, 50665.	1.3	23
15	Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Materials Science and Engineering C, 2021, 123, 111853.	3.8	28
16	Polymer Based Triboelectric Nanogenerator for Costâ€Effective Green Energy Generation and Implementation of Surfaceâ€Charge Engineering. Energy Technology, 2021, 9, 2001088.	1.8	7
17	The Effect of Solvent and Molecular Weight on the Morphology of Centrifugally Spun Poly(vinylpyrrolidone) Nanofibers. Fibers and Polymers, 2021, 22, 2394-2403.	1.1	11
18	Aloe Vera extract-based composite nanofibers for wound dressing applications. Materials Science and Engineering C, 2021, 124, 112061.	3.8	37

#	Article	IF	Citations
19	Two-Dimensional Modeling of Nonlinear Dynamics of Forcespinning Jet Formation. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	0.7	5
20	KNN based piezo-triboelectric lead-free hybrid energy films. Nano Energy, 2021, 86, 106133.	8.2	37
21	Piezoelectric Properties of PVDF-Zn2GeO4 Fine Fiber Mats. Energies, 2021, 14, 5936.	1.6	5
22	Enhanced sensitivity of caterpillar-like ZnO nanostructure towards amine vapor sensing. Materials Research Bulletin, 2021, 142, 111419.	2.7	6
23	Tunable CsPb(Br/Cl) ₃ perovskite nanocrystals and further advancement in designing light emitting fiber membranes. Materials Advances, 2021, 2, 2700-2710.	2.6	19
24	Raman investigations of the radiation-induced modifications in iPP-VGCNF nanocomposites: The nanofillers $\hat{a} \in \mathbb{N}$ tale. Carbon Trends, 2021, 5, 100119.	1.4	1
25	Nanofiber-Based Substrate for a Triboelectric Nanogenerator: High-Performance Flexible Energy Fiber Mats. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60401-60412.	4.0	23
26	Tailoring the viscosity of water and ethylene glycol based TiO2 nanofluids. Journal of Molecular Liquids, 2020, 297, 111982.	2.3	38
27	Design and Validation of a Portable Handheld Device to Produce Fine Fibers Using Centrifugal Forces. Instruments, 2020, 4, 27.	0.8	1
28	Electromagnetic-triboelectric-hybrid energy tile for biomechanical green energy harvesting. Nano Energy, 2020, 77, 105250.	8.2	39
29	All-Carbon Conductors for Electronic and Electrical Wiring Applications. Frontiers in Materials, 2020, 7, .	1.2	30
30	Luminescent PVDF nanocomposite films and fibers encapsulated with La2Hf2O7:Eu3+ nanoparticles. SN Applied Sciences, 2020, 2, 1.	1.5	12
31	Processingâ€structureâ€property relationships of biopolyester/zinc oxide fibrous scaffolds engineered by centrifugal spinning. Polymers for Advanced Technologies, 2020, 31, 2601-2614.	1.6	9
32	Spectroscopic investigations on PVDFâ€Fe ₂ O ₃ nanocomposites. Journal of Applied Polymer Science, 2020, 137, 48907.	1.3	24
33	In situ synthesis of Fe3O4-reinforced carbon fiber composites as anodes in lithium-ion batteries. Journal of Materials Science, 2019, 54, 13479-13490.	1.7	41
34	Raman investigations on gamma irradiated iPP-VGCNF nanocomposites: The polymer's tale. Surfaces and Interfaces, 2019, 17, 100351.	1.5	1
35	ForceSpun polydiacetylene nanofibers as colorimetric sensor for food spoilage detection. Sensors and Actuators B: Chemical, 2019, 297, 126734.	4.0	87
36	Performance evaluation of Ce3+ doped flexible PVDF fibers for efficient optical pressure sensors. Sensors and Actuators A: Physical, 2019, 298, 111595.	2.0	37

#	Article	IF	Citations
37	Development of chromatic biosensor for quick bacterial detection based on polyvinyl butyrate-polydiacetylene nonwoven fiber composites. European Polymer Journal, 2019, 121, 109284.	2.6	7
38	Raman spectroscopy and molecular bases of elasticity: SEBS-graphite composites. Polymer, 2019, 176, 74-88.	1.8	12
39	Synthesis of multiwall α-Fe2O3 hollow fibers via a centrifugal spinning technique. Materials Science and Engineering C, 2019, 102, 552-557.	3.8	29
40	Antibacterial activity of polymeric nanofiber membranes impregnated with Texas sour orange juice. European Polymer Journal, $2019,115,1-5.$	2.6	20
41	Forcespinning technique for the production of poly(<scp>d</scp> , <scp>l</scp> â€lactic acid) submicrometer fibers: Process–morphology–properties relationship. Journal of Applied Polymer Science, 2019, 136, 47643.	1.3	27
42	Ternary Composite Nanofibers Containing Chondroitin Sulfate Scavenge Inflammatory Chemokines from Solution and Prohibit Squamous Cell Carcinoma Migration. ACS Applied Bio Materials, 2019, 2, 619-624.	2.3	11
43	Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Interlayered Systems Composed by Carbon Nanotube Filled Carbon Nanofiber Mats and Polymer Composites. Nanomaterials, 2019, 9, 238.	1.9	36
44	Highâ€Throughput Production With Improved Functionality and Graphitization of Carbon Fine Fibers Developed from Sodium Chlorideâ€Polyacrylonitrile Precursors. Polymer Engineering and Science, 2018, 58, 2047-2054.	1.5	5
45	Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surfaces and Interfaces, 2018, 10, 100-109.	1.5	111
46	Development and optimization of alumina fine fibers utilizing a centrifugal spinning process. Microporous and Mesoporous Materials, 2018, 262, 175-181.	2.2	22
47	Texas Sour Orange Juice Used in Scaffolds for Tissue Engineering. Membranes, 2018, 8, 38.	1.4	5
48	Fabrication and Characterization of Poly(L-lactic Acid) Fiber Mats Using Centrifugal Spinning. Fibers and Polymers, 2018, 19, 1271-1277.	1.1	12
49	Polyethylene oxideâ€"fullerene nanocomposites. Applied Surface Science, 2017, 421, 220-227.	3.1	14
50	Isotactic polypropylene–vapor grown carbon nanofibers composites: Electrical properties. Journal of Applied Polymer Science, 2017, 134, 45297.	1.3	10
51	Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Applied Surface Science, 2017, 410, 267-277.	3.1	81
52	On orientation memory in high density polyethylene – carbon nanofibers composites. E-Polymers, 2017, 17, 303-310.	1.3	11
53	Influence of carbon nanotube concentration and sonication temperature on mechanical properties of HDPE/CNT nanocomposites. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 531-539.	1.0	41
54	In Situ Production of Graphene–Fiber Hybrid Structures. ACS Applied Materials & Samp; Interfaces, 2017, 9, 25474-25480.	4.0	12

#	Article	IF	CITATIONS
55	Past, Present and Future of Surgical Meshes: A Review. Membranes, 2017, 7, 47.	1.4	181
56	Optimizing the dehydrogenation catalyst of higher normal paraffins supported on a nanocrystalline gamma alumina. Catalysis Science and Technology, 2016, 6, 5982-5991.	2.1	4
57	Centrifugal Spinning: An Alternative for Large Scale Production of Silicon–Carbon Composite Nanofibers for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 29365-29372.	4.0	22
58	Dependence of Photoelectrochemical Properties on Geometry Factors of Interconnected "Caterpillar-like―ZnO Networks. Electrochimica Acta, 2016, 222, 232-245.	2.6	15
59	Mechanical and electrical characterization of carbon nanofibers produced from water soluble precursors. Materials Today Communications, 2016, 7, 134-139.	0.9	11
60	Fabrication of cellulose fine fiber based membranes embedded with silver nanoparticles via Forcespinning. Journal of Polymer Engineering, 2016, 36, 269-278.	0.6	20
61	Development of hierarchical structured carbon nanotubeâ€nylon nanofiber mats. Journal of Applied Polymer Science, 2015, 132, .	1.3	16
62	TiO ₂ Fibers: Tunable Polymorphic Phase Transformation and Electrochemical Properties. Journal of Nanoscience and Nanotechnology, 2015, 15, 3750-3756.	0.9	3
63	Fibrous cellulose membrane mass produced via forcespinning \hat{A}^{\otimes} for lithium-ion battery separators. Cellulose, 2015, 22, 1311-1320.	2.4	99
64	The production of carbon nanotube reinforced poly(vinyl) butyral nanofibers by the Forcespinning \hat{A}^{\circledast} method. Polymer Engineering and Science, 2015, 55, 81-87.	1.5	36
65	Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydrate Polymers, 2015, 115, 16-24.	5.1	183
66	Synthesis of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -SiC Fine Fibers by the Forcespinning Method with Microwave Irradiation. Journal of Ceramics, 2015, 2015, 1-5.	0.9	8
67	Mass production of carbon nanotubeâ€reinforced polyacrylonitrile fine composite fibers. Journal of Applied Polymer Science, 2014, 131, .	1.3	22
68	Large-scale production of a ternary composite nanofiber membrane for wound dressing applications. Journal of Bioactive and Compatible Polymers, 2014, 29, 646-660.	0.8	19
69	Nanodiamond-Based Thermal Fluids. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4778-4785.	4.0	75
70	Mixed-valent VOx/polymer nanohybrid fibers for flexible energy storage materials. Ceramics International, 2014, 40, 5073-5077.	2.3	13
71	Mass production of carbon nanotube reinforced poly(methyl methacrylate) nonwoven nanofiber mats. Carbon, 2014, 75, 217-226.	5.4	64
72	Facile and Scalable Synthesis of "Caterpillar-like―ZnO Nanostructures with Enhanced Photoelectrochemical Water-Splitting Effect. Journal of Physical Chemistry C, 2014, 118, 13467-13475.	1.5	54

#	Article	IF	Citations
73	Asymmetric supercapacitors with dominant pseudocapacitance based on manganese oxide nanoflowers in a neutral aqueous electrolyte. RSC Advances, 2013, 3, 24886.	1.7	9
74	Experimental study of nanofiber production through forcespinning. Journal of Applied Physics, 2013, 113, .	1.1	218
75	Adding Autonomic Healing Capabilities to Polyethylene Oxide. Advances in Polymer Technology, 2013, 32, .	0.8	10
76	Thermo-physical behaviors of carbon nanofiber reinforced polylactic acid. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
77	Fabrication of Melt Spun Polypropylene Nanofibers by Forcespinning. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	0.5	26
78	Raman Spectroscopy of Isotactic Polypropylene-Halloysite Nanocomposites. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	4
79	LARGE-SCALE SYNTHESIS OF TIN-DOPED INDIUM OXIDE NANOFIBERS USING WATER AS SOLVENT. Functional Materials Letters, 2012, 05, 1250020.	0.7	28
80	Non-isothermal crystallization kinetics of polyethylene/carbon nanofiber composites. Journal of Composite Materials, 2012, 46, 823-832.	1.2	20
81	Electromagnetic interference shielding effectiveness of nanoreinforced polymer composites deposited with conductive metallic thin films. Thin Solid Films, 2012, 520, 6547-6550.	0.8	24
82	Thermal behavior of poly(ethyleneâ€ <i>co</i> â€propylene) containing carbon nanofibers. Polymer Engineering and Science, 2012, 52, 408-413.	1.5	2
83	Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinningâ,,¢. Polymer Engineering and Science, 2012, 52, 2260-2265.	1.5	80
84	Fourier transform infrared spectroscopy and wideâ€angle Xâ€ray scattering: Investigations on polypropylene–vaporâ€grown carbon nanofiber composites. Journal of Applied Polymer Science, 2012, 125, 353-360.	1.3	12
85	Production and characterization of hybrid BEHâ€PPV/PEO conjugated polymer nanofibers by forcespinningâ,,¢. Journal of Applied Polymer Science, 2012, 125, 3610-3616.	1.3	65
86	Production and characterization of polycaprolactone nanofibers via forcespinningâ, ¢ technology. Journal of Applied Polymer Science, 2012, 126, 473-479.	1.3	108
87	Effects of Water Content and Chemical Composition on Structural Properties of Alkaline Activated Metakaolinâ€Based Geopolymers. Journal of the American Ceramic Society, 2012, 95, 2169-2177.	1.9	129
88	Synthesis and Characterization of Poly(butylene Oxide) Grafted Carbon Nanofibers. Journal of Nanoscience and Nanotechnology, 2011, 11, 3965-3969.	0.9	3
89	Electrorheological Analysis of Colloidal Dispersions of Aluminum Oxide and Silicone Oil. Journal of Nanoscience and Nanotechnology, 2011, 11, 6852-6857.	0.9	1
90	Effects of carbon nanofibers on the crystallization kinetics of polyethylene oxide. Journal of Polymer Research, 2011, 18, 875-880.	1.2	20

#	Article	IF	Citations
91	The effect of carbon nanofiber on the thermoâ€physical behavior of polyethylene oxide. Journal of Applied Polymer Science, 2011, 120, 3574-3580.	1.3	2
92	Polarization sensitive near-complete reflection from photonic crystal slab in centered rectangular lattice. Journal of Applied Physics, 2011, 110, 023103.	1.1	1
93	Thermal and viscoelastic behaviors of nanotube-reinforced polyethylene composite. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0
94	Electrospinning to Forcespinningâ,,¢. Materials Today, 2010, 13, 12-14.	8.3	328
95	Thermophysical analysis of SU8â€modified microstructures created by visible light lithography. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 47-54.	2.4	7
96	Holographically formed three-dimensional Penrose-type photonic quasicrystal through a lab-made single diffractive optical element. Optics Express, 2010, 18, 20512.	1.7	23
97	Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography. Journal of Applied Physics, 2010, 108, .	1.1	13
98	Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element. Applied Physics Letters, 2009, 94, 231116.	1.5	28
99	Polyoctenamer - Single Walled Carbon Nanotube Composites: Spectroscopic Investigations. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
100	Investigation of the electromagnetic interference shielding of titanium carbide coated nanoreinforced liquid crystalline polymer. Journal of Applied Physics, 2009, 105, 103511.	1.1	14
101	Spectroscopic investigations on polypropyleneâ€carbon nanofiber composites. I. Raman and electron spin resonance spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1644-1652.	2.4	16
102	Processing effects on the thermo-physical properties of carbon nanotube polyethylene composite. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2009, 526, 123-127.	2.6	11
103	Study of processing variables on the electrical resistivity of conductive adhesives. International Journal of Adhesion and Adhesives, 2009, 29, 488-494.	1.4	78
104	Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element. Optics Express, 2009, 17, 16625.	1.7	32
105	A Practical Approach to Integrating Nanotechnology Education and Research into Civil Engineering Undergraduate Curriculum. Journal of Nano Education (Print), 2009, 1, 22-33.	0.3	6
106	TGA analysis of polypropylene–carbon nanofibers composites. Polymer Degradation and Stability, 2008, 93, 871-876.	2.7	89
107	Fabrication of two-layer integrated phase mask for single-beam and single-exposure fabrication of three-dimensional photonic crystal. Optics Express, 2008, 16, 9165.	1.7	29
108	Analysis of Electromagnetic Effect on the Electrorheological Properties of Nano-Laden Systems. , 2008, , .		0

#	Article	IF	CITATIONS
109	Holographic fabrication of photonic crystals using multidimensional phase masks. Journal of Applied Physics, 2008, 104, 113111.	1.1	7
110	Fabrication of two-layer integrated phase mask and single-beam, single exposure fabrication of 3D photonic crystal template using the mask. , 2008, , .		0
111	Dielectric analysis of VGCNF reinforced polyethylene composites. Composites Science and Technology, 2007, 67, 1159-1166.	3.8	52
112	C60 structural transformation by electrorheological testing. Carbon, 2007, 45, 2374-2378.	5 . 4	6
113	Effects of microwave assisted heating of carbon nanofiber reinforced high density polyethylene. Journal of Materials Processing Technology, 2007, 190, 324-331.	3.1	29
114	Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 2007, 67, 1509-1517.	3.8	303
115	Electrorheological analysis of nano laden suspensions. Journal of Colloid and Interface Science, 2006, 297, 618-624.	5.0	39
116	Nanotechnology: Awareness and societal concerns. Technology in Society, 2005, 27, 329-345.	4.8	68
117	Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 691-697.	3.8	303
118	Rheological analysis of vapor-grown carbon nanofiber-reinforced polyethylene composites. Journal of Applied Polymer Science, 2004, 93, 155-162.	1.3	78
119	Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes. Advanced Functional Materials, 2004, 14, 643-648.	7.8	560
120	Thermal analysis of an acrylonitrile–butadiene–styrene/SWNT composite. Polymer Degradation and Stability, 2004, 83, 383-388.	2.7	149
121	Nanofiber toughened polyethylene composites. Carbon, 2004, 42, 2329-2331.	5.4	109
122	Effects of nanofiber treatments on the properties of vapor-grown carbon fiber reinforced polymer composites. Journal of Applied Polymer Science, 2003, 89, 2527-2534.	1.3	28
123	Nanofiber-reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science, 2003, 89, 3081-3090.	1.3	395
124	Rheological examination of C60 in low density solutions. Carbon, 2002, 40, 271-276.	5.4	7
125	Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science, 2001, 79, 125-133.	1.3	383
126	A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties. Journal of Applied Polymer Science, 2001, 80, 1162-1172.	1.3	282

KAREN LOZANO

#	Article	IF	CITATIONS
127	Cell proliferative properties of Forcespinning $\hat{A}^{@}$ nopal composite nanofibers. Journal of Bioactive and Compatible Polymers, 0, , 088391152110604.	0.8	2
128	Color tunable aerogels/sponge-like structures developed from fine fiber membranes. Materials Advances, 0, , .	2.6	1