Yu Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5590659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon, 2020, 156, 253-260.	5.4	67
2	Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small, 2020, 16, e1901124.	5.2	97
3	Graphene Oxide Modified Porous Graphene for Aqueous Alcohol Detection. , 2020, 4, 1-4.		4
4	Wearable Electronics: Wearable Electronics Based on 2D Materials for Human Physiological Information Detection (Small 15/2020). Small, 2020, 16, 2070083.	5.2	4
5	Flexible laser-induced-graphene omnidirectional sound device. Chemical Physics Letters, 2020, 745, 137275.	1.2	15
6	Graphene-based Wearable Sensors for Physiological Signal Monitoring. , 2019, , .		0
7	Graphene based Wearable Sensors for Healthcare. , 2019, , .		4
8	Synergistic influence of micropore architecture and TiO2 coating on the microwave absorption properties of Co nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 5620-5630.	1.1	5
9	Negative Capacitance Oxide Thin-Film Transistor With Sub-60 mV/Decade Subthreshold Swing. IEEE Electron Device Letters, 2019, 40, 826-829.	2.2	26
10	High performance and low-cost graphene vacuum pressure sensor based on one-step laser scribing. Applied Physics Letters, 2019, 114, .	1.5	12
11	A contact lens promising for non-invasive continuous intraocular pressure monitoring. RSC Advances, 2019, 9, 5076-5082.	1.7	29
12	Graphene devices based on laser scribing technology. Japanese Journal of Applied Physics, 2018, 57, 04FA01.	0.8	19
13	Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano, 2018, 12, 2346-2354.	7.3	579
14	Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor. ACS Applied Materials & Interfaces, 2018, 10, 3948-3954.	4.0	118
15	Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection. ACS Applied Materials & Interfaces, 2018, 10, 44173-44182.	4.0	36
16	Gait Recognition Based on Graphene Porous Network Structure Pressure Sensors for Rehabilitation Therapy. , 2018, , .		6
17	Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosensors and Bioelectronics, 2018, 116, 123-129.	5.3	278
18	An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale, 2018, 10, 11524-11530.	2.8	77

Yu Pang

#	Article	IF	CITATIONS
19	MoS ₂ Synaptic Transistor With Tunable Weight Profile. IEEE Transactions on Electron Devices, 2018, 65, 3543-3547.	1.6	13
20	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846.	7.3	257
21	Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano, 2018, 12, 9134-9141.	7.3	455
22	An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nature Communications, 2017, 8, 14579.	5.8	396
23	Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions. Nanoscale, 2017, 9, 8266-8273.	2.8	100
24	A Ferroelectric Thin Film Transistor Based on Annealing-Free HfZrO Film. IEEE Journal of the Electron Devices Society, 2017, 5, 378-383.	1.2	43
25	Large-Scale and High-Density pMUT Array Based on Isolated Sol-Gel PZT Membranes for Fingerprint Imaging. Journal of the Electrochemical Society, 2017, 164, B377-B381.	1.3	25
26	A super flexible and custom-shaped graphene heater. Nanoscale, 2017, 9, 14357-14363.	2.8	63
27	Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al3Ni2@Al nanoparticles as a high microwave absorption material. Journal of Magnetism and Magnetic Materials, 2017, 426, 211-216.	1.0	21
28	3D Stretchable Arch Ribbon Array Fabricated via Grayscale Lithography. Scientific Reports, 2016, 6, 28552.	1.6	7
29	Enhancement of carrier mobility in MoS2 field effect transistors by a SiO2 protective layer. Applied Physics Letters, 2016, 108, .	1.5	36
30	High performance photodetector based on Pd-single layer MoS2 Schottky junction. Applied Physics Letters, 2016, 109, .	1.5	15
31	Influences of ultrasonic irradiation on the morphology and structure of nanoporous Co nanoparticles during chemical dealloying. Progress in Natural Science: Materials International, 2016, 26, 562-566.	1.8	9
32	Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Applied Materials & Interfaces, 2016, 8, 26458-26462.	4.0	387
33	Tunable graphene oxide reduction and graphene patterning at room temperature on arbitrary substrates. Carbon, 2016, 109, 173-181.	5.4	38
34	The synergistic effects of carbon coating and micropore structure on the microwave absorption properties of Co/CoO nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 30507-30514.	1.3	38
35	High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale, 2016, 8, 20090-20095.	2.8	108
36	Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material. Journal of Materials Chemistry C, 2016, 4, 1727-1735.	2.7	320

Yu Pang

#	Article	IF	CITATIONS		
37	Synthesis of microporous Ni/NiO nanoparticles with enhanced microwave absorption properties. Journal of Alloys and Compounds, 2016, 667, 287-296.	2.8	55		
38	Superparamagnetic property and high microwave absorption performance of FeAl@(Al,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (F				
	Chemistry C, 2015, 3, 6232-6239.	2.7	31		
39	Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale, 2014. 6. 2447.	2.8	272		