
Jenu V Chacko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5590636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperdimensional Imaging Contrast Using an Optical Fiber. Sensors, 2021, 21, 1201.	3.8	2
2	Autofluorescence Anisotropy based investigation of cellular heterogeneity and metabolism. , 2021, , .		0
3	New Extensibility and Scripting Tools in the ImageJ Ecosystem. Current Protocols, 2021, 1, e204.	2.9	3
4	Two-photon excitation fluorescent spectral and decay properties of retrograde neuronal tracer Fluoro-Gold. Scientific Reports, 2021, 11, 18053.	3.3	3
5	Nanobiophotonics and fluorescence nanoscopy in 2020. , 2020, , 113-162.		2
6	Second Harmonic Generation Imaging of Collagen in Chronically Implantable Electrodes in Brain Tissue. Frontiers in Neuroscience, 2020, 14, 95.	2.8	14
7	Optical imaging of collagen fiber damage to assess thermally injured human skin. Wound Repair and Regeneration, 2020, 28, 848-855.	3.0	15
8	A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa. MBio, 2020, 11, .	4.1	30
9	FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. PLoS ONE, 2020, 15, e0238327.	2.5	23
10	Fluorescence Lifetime: Techniques, Analysis, and Applications in the Life Sciences. , 2020, , 141-168.		0
11	Fluorescence Anisotropy in Autofluorescence Imaging and Metabolic Interpretations. , 2020, , .		Ο
12	FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. , 2020, 15, e0238327.		0
13	FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. , 2020, 15, e0238327.		Ο
14	FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. , 2020, 15, e0238327.		0
15	FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis. , 2020, 15, e0238327.		Ο
16	Interfacial and Nanoconfinement Effects Decrease the Excited-State Acidity of Polymer-Bound Photoacids. CheM, 2019, 5, 1648-1670.	11.7	20
17	NAD(P)H fluorescence lifetime measurements in fixed biological tissues. Methods and Applications in Fluorescence, 2019, 7, 044005.	2.3	22
18	Coding Scheme Optimization for Fast Fluorescence Lifetime Imaging. ACM Transactions on Graphics, 2019, 38, 1-16.	7.2	3

2

JENU V CHACKO

#	Article	IF	CITATIONS
19	Optimization of interstrand interactions enables burn detection with a collagen-mimetic peptide. Organic and Biomolecular Chemistry, 2019, 17, 9906-9912.	2.8	19
20	Autofluorescence lifetime imaging of cellular metabolism: Sensitivity toward cell density, pH, intracellular, and intercellular heterogeneity. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 56-69.	1.5	46
21	Optical fiber-based dispersion for spectral discrimination in fluorescence lifetime imaging systems. Journal of Biomedical Optics, 2019, 25, 1.	2.6	2
22	Nonparametric empirical Bayesian framework for fluorescence-lifetime imaging microscopy. Biomedical Optics Express, 2019, 10, 5497.	2.9	19
23	Viral highway to nucleus exposed by image correlation analyses. Scientific Reports, 2018, 8, 1152.	3.3	10
24	Feasibility study on mouse live imaging after spinal cord injury and poly(lactide-co-glycolide) bridge implantation. Journal of Biomedical Optics, 2018, 23, 1.	2.6	6
25	NADH Auto Fluorescence Reveals New Metabolic Signatures in Yeast and Mammalian Cells. Biophysical Journal, 2017, 112, 282a.	0.5	0
26	Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Science Translational Medicine, 2017, 9, .	12.4	74
27	Elucidation of Exosome Migration Across the Blood–Brain Barrier Model In Vitro. Cellular and Molecular Bioengineering, 2016, 9, 509-529.	2.1	368
28	Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles. ACS Nano, 2016, 10, 8413-8422.	14.6	57
29	Metabolic Profiling in Metastatic Cancer Cells using Frequency Domain Fluorescence Lifetime Microscopy. Biophysical Journal, 2016, 110, 167a.	0.5	1
30	Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging. Journal of Biomedical Optics, 2014, 19, 1.	2.6	24
31	Insight into Hybrid Nanoscopy Techniques: STED AFM & STORM AFM. Biophysical Journal, 2014, 106, 396a.	0.5	0
32	The Art of Perceiving Your Sample with AFM-STED-FCS. Biophysical Journal, 2013, 104, 514a.	0.5	0
33	Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach. Cytoskeleton, 2013, 70, 729-740.	2.0	74
34	Taking Two-Photon Excitation (2PE) further: 2PE coupling to Far-field Optical Nanoscopy and Super Resolution Microscopy towards Three-dimensional (3D) Imaging of Thick Scattering Specimens. Microscopy and Microanalysis, 2013, 19, 166-167.	0.4	0
35	Sub-Diffraction Nano Manipulation Using STED AFM. PLoS ONE, 2013, 8, e66608.	2.5	45
36	"Nanoscopium Nominare Libuitâ€: Approaches Towards Optical Nanoscopy and Individual Molecule Localization Microscopy Improvements. Biophysical Journal, 2012, 102, 4a.	0.5	0

JENU V CHACKO

#	Article	IF	CITATIONS
37	STED - AFM: Tip Probing Enhanced by Super Resolved Targeting. Biophysical Journal, 2012, 102, 224a.	0.5	Ο
38	A novel nanoscopic tool by combining AFM with STED microscopy. Optical Nanoscopy, 2012, 1, 3.	4.0	74
39	Ultracompact alignment-free single molecule fluorescence device with a foldable light path. Journal of Biomedical Optics, 2011, 16, 025004.	2.6	9
40	Development of Optics Kit for Schools in Developing Countries – International School of Photonics Model. , 2009, , .		1
41	Development of Optics Kit for schools in developing countries: International School of Photonics model. Proceedings of SPIE, 2009, , .	0.8	0