Gerardo DÃ-az-GodÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5590371/publications.pdf

Version: 2024-02-01

687363 454955 37 930 13 30 g-index citations h-index papers 38 38 38 1106 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal, 2003, 13, 157-167.	3.6	311
2	Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 271-275.	3.0	90
3	Evaluation of the Antioxidant Activity of Aqueous and Methanol Extracts of Pleurotus ostreatus in Different Growth Stages. Frontiers in Microbiology, 2016, 7, 1099.	3 . 5	84
4	Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation. Applied Microbiology and Biotechnology, 2008, 81, 675-679.	3.6	65
5	Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycological Research, 2008, 112, 1080-1084.	2.5	47
6	Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts, 2021, 11, 851.	3.5	31
7	Medium Selection and Effect of Higher Oxygen Concentration Pulses on Metarhizium anisopliae var. lepidiotum Conidial Production and Quality. Mycopathologia, 2010, 169, 387-394.	3.1	29
8	Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: biochemical aspects and preparation of mushroom inoculum. Applied Microbiology and Biotechnology, 2006, 72, 812-815.	3.6	21
9	Fungal biodegradation of dibutyl phthalate and toxicity of its breakdown products on the basis of fungal and bacterial growth. World Journal of Microbiology and Biotechnology, 2014, 30, 2811-2819.	3.6	21
10	Effect of textile dyes on activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged fermentation. AMB Express, 2016, 6, 93.	3.0	19
11	Phylogenetic analysis of \hat{l}^2 -xylanase SRXL1 of Sporisorium reilianum and its relationship with families (GH10 and GH11) of Ascomycetes and Basidiomycetes. Scientific Reports, 2016, 6, 24010.	3.3	18
12	Omic tools to study enzyme production from fungi in the Pleurotus genus. BioResources, 2019, 14, 2420-2457.	1.0	16
13	Characterization of the growth and laccase activity of strains of Pleurotus ostreatus in submerged fermentation. BioResources, 2011, 6, 282-290.	1.0	15
14	Enzymatic Activity and Pathogenicity of Entomopathogenic Fungi from Central and Southeastern Mexico to Diaphorina citri (Hemiptera: Psyllidae). Southwestern Entomologist, 2014, 39, 491.	0.2	14
15	Mycosphere Essay 10: Properties and characteristics of microbial xylanases. Mycosphere, 2016, 7, 1600-1619.	6.1	13
16	Purification and Characterization of Xylanase SRXL1 from Sporisorium reilianum Grown in Submerged and Solid-State Fermentation. BioResources, 2013, 8, .	1.0	11
17	Mycosphere Essay 11: Fungi of Pycnoporus: morphological and molecular identification, worldwide distribution and biotechnological potential. Mycosphere, 2016, 7, 1500-1525.	6.1	11
18	Simple staining detects ultrastructural and biochemical differentiation of vegetative hyphae and fruit body initials in colonies of Pleurotus pulmonarius. Letters in Applied Microbiology, 2004, 38, 483-487.	2.2	10

#	Article	IF	CITATIONS
19	LIGNINOLYTIC ACTIVITY PATTERNS OF <i>Pleurotus ostreatus </i> IN PRESENCE OF 2,6-DIMETHOXYPHENOL AND REMAZOL BRILLIANT BLUE R DYE. Preparative Biochemistry and Biotechnology, 2013, 43, 468-480.	1.9	10
20	Xylanases, Cellulases, and Acid Protease Produced by Stenocarpella may dis Grown in Solid-state and Submerged Fermentation. BioResources, 2014, 9, .	1.0	10
21	Integral Use of Amaranth Starch to Obtain Cyclodextrin Glycosyltransferase, by Bacillus megaterium, to Produce β-Cyclodextrin. Frontiers in Microbiology, 2016, 7, 1513.	3.5	10
22	Enzymatic, Antioxidant, Antimicrobial, and Insecticidal Activities of Pleurotus pulmonarius and Pycnoporus cinnabarinus Grown Separately in an Airlift Reactor. BioResources, 2016, 11, .	1.0	9
23	In silico Design of Laccase Thermostable Mutants From Lacc 6 of Pleurotus Ostreatus. Frontiers in Microbiology, 2018, 9, 2743.	3.5	9
24	Isolation of Fungi from a Textile Industry Effluent and the Screening of Their Potential to Degrade Industrial Dyes. Journal of Fungi (Basel, Switzerland), 2021, 7, 805.	3.5	9
25	Influence of initial pH of the growing medium on the activity, production and expression profiles of laccases produced by Pleurotus ostreatus in submerged fermentation. Electronic Journal of Biotechnology, 2013, 16, .	2.2	8
26	DESCRIPTION OF A LACCASE GENE FROM PLEUROTUS OSTREATUS EXPRESSED UNDER SUBMERGED FERMENTATION CONDITIONS. BioResources, 2012, 7, .	1.0	6
27	Physiology of a colony of Pleurotus pulmonarius grown on medium overlaid with a Cellophane membrane. Applied Microbiology and Biotechnology, 2003, 63, 212-216.	3.6	5
28	Heterologous Expression of Laccase (LACP83) of Pleurotus ostreatus. BioResources, 2017, 12, .	1.0	5
29	Characterization of the Solid-State and Liquid Fermentation for the Production of Laccases of Pleurotus ostreatus. , 0, , .		4
30	Mycelial growth of strains of Pleurotus ostreatus developed on agar and its correlation with the productivity in pilot production farm. Brazilian Journal of Microbiology, 2007, 38, 568-572.	2.0	3
31	Ethnomycological knowledge of wild edible mushrooms in Tlayacapan, Morelos. Mycosphere, 2016, 7, 1491-1499.	6.1	3
32	Enzymatic activity of three wild mushrooms. Mycosphere, 2016, 7, 1568-1575.	6.1	3
33	Microscopic observations of the early development of Pleurotus pulmonarius fruit bodies. Mycologia, 2006, 98, 682-689.	1.9	2
34	Nematicidal activity of a hydroalcoholic extract of the edible mushroom Neolentinus ponderosus on L3 larvae of Haemonchus contortus. Acta Parasitologica, 2021, 66, 969-976.	1.1	2
35	Mycelial inhibition of Trichoderma spp. isolated from the cultivation of Pleurotus ostreatus with an extract of Pycnoporus sp Acta Botanica Mexicana, 2020, , .	0.3	2
36	In Silico Generation of Laccase Mutants from Lacc 6 of Pleurotus ostreatus and Bacterial Enzymes. BioResources, 2018, 13 , .	1.0	1

#	Article	IF	CITATIONS
37	Fungal Productions of Biological Active Proteins. Fungal Biology, 2021, , 65-84.	0.6	0