List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5590265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucagonâ€like peptideâ€l receptor agonist treatment of high carbohydrate intakeâ€induced metabolic syndrome provides pleiotropic effects on cardiac dysfunction through alleviations in electrical and intracellular Ca ²⁺ abnormalities and mitochondrial dysfunction. Clinical and Experimental Pharmacology and Physiology, 2022, 49, 46-59.	0.9	10
2	Insulin acts as an atypical KCNQ1/KCNE1â€current activator and reverses long QT in insulinâ€resistant aged rats by accelerating the ventricular action potential repolarization through affecting the β ₃ â€adrenergic receptor signaling pathway. Journal of Cellular Physiology, 2022, 237, 1353-1371.	2.0	8
3	Astaxanthin Enhances Gingival Wound Healing following High Glucose-Induced Oxidative Stress. BioMed Research International, 2022, 2022, 1-7.	0.9	2
4	STIM1-Orai1 interaction mediated calcium influx activation contributes to cardiac contractility of insulin-resistant rats. BMC Cardiovascular Disorders, 2022, 22, 147.	0.7	1
5	Comparisons of pleiotropic effects of SGLT2 inhibition and GLP-1 agonism on cardiac glucose intolerance in heart dysfunction. Molecular and Cellular Biochemistry, 2022, 477, 2609-2625.	1.4	4
6	The role of labile Zn2+ and Zn2+–transporters in the pathophysiology of mitochondria dysfunction in cardiomyocytes. Molecular and Cellular Biochemistry, 2021, 476, 971-989.	1.4	10
7	Investigation of the Effect of the Antiaggregant Agent Ticagrelor on the Electrical and Mechanical Activities of Rat Heart With Type 1 Diabetes. Journal of Ankara University Faculty of Medicine, 2021, 74, 206-212.	0.0	0
8	Molecular and Electrophysiological Role of Diabetes-Associated Circulating Inflammatory Factors in Cardiac Arrhythmia Remodeling in a Metabolic-Induced Model of Type 2 Diabetic Rat. International Journal of Molecular Sciences, 2021, 22, 6827.	1.8	6
9	Ticagrelor alleviates high-carbohydrate intake induced altered electrical activity of ventricular cardiomyocytes by regulating sarcoplasmic reticulum–mitochondria miscommunication. Molecular and Cellular Biochemistry, 2021, 476, 3827-3844.	1.4	4
10	Bimodal Effects of P2Y12 Antagonism on Matrix Metalloproteinase–Associated Contractile Dysfunction in İnsulin-Resistant Mammalian Heart. Biological Trace Element Research, 2021, , 1.	1.9	0
11	Differential expression of genes participating in cardiomyocyte electrophysiological remodeling via membrane ionic mechanisms and Ca2+-handling in human heart failure. Molecular and Cellular Biochemistry, 2020, 463, 33-44.	1.4	10
12	Altered mitochondrial metabolism in the insulinâ€resistant heart. Acta Physiologica, 2020, 228, e13430.	1.8	56
13	Ageingâ€associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca ²⁺ homeostasis and promotes cardiac dysfunction. Journal of Cellular and Molecular Medicine, 2020, 24, 8567-8578.	1.6	27
14	MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Experimental Gerontology, 2020, 136, 110961.	1.2	20
15	Ticagrelor reverses the mitochondrial dysfunction through preventing accumulated autophagosomes-dependent apoptosis and ER stress in insulin-resistant H9c2 myocytes. Molecular and Cellular Biochemistry, 2020, 469, 97-107.	1.4	7
16	Mitochondria-Targeting Antioxidant Provides Cardioprotection through Regulation of Cytosolic and Mitochondrial Zn2+ Levels with Re-Distribution of Zn2+-Transporters in Aged Rat Cardiomyocytes. International Journal of Molecular Sciences, 2019, 20, 3783.	1.8	19
17	Azoramide improves mitochondrial dysfunction in palmitate-induced insulin resistant H9c2 cells. Molecular and Cellular Biochemistry, 2019, 461, 65-72.	1.4	9
18	Inhibiton of Protein Kinase G Preserves Prolonged Ventricular Action Potentials via Improvement of Slow-Activated Voltage-Dependent K+-Channel Currents in Aged Rat Cardiomyocytes. Biophysical Journal, 2019, 116, 98a.	0.2	0

#	Article	IF	CITATIONS
19	Sirtuins Positively Regulate KATP Channels, Which Contributes to their Cardioprotective Role. Biophysical Journal, 2019, 116, 250a.	0.2	0
20	β 3 â€adrenergic receptor activation plays an important role in the depressed myocardial contractility via both elevated levels of cellular free Zn 2+ and reactive nitrogen species. Journal of Cellular Physiology, 2019, 234, 13370-13386.	2.0	7
21	Zn2+-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion, 2019, 44, 41-52.	1.6	40
22	Increased free Zn ²⁺ correlates induction of sarco(endo)plasmic reticulum stress <i>via</i> altered expression levels of Zn ²⁺ â€transporters in heart failure. Journal of Cellular and Molecular Medicine, 2018, 22, 1944-1956.	1.6	25
23	Cytosolic increased labile Zn2+ contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion. Journal of Trace Elements in Medicine and Biology, 2018, 48, 202-212.	1.5	14
24	Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia. Molecular and Cellular Biochemistry, 2018, 443, 25-36.	1.4	6
25	A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovascular Diabetology, 2018, 17, 144.	2.7	105
26	Intermittent Hypoxia Induced Beneficial Cardiovascular Remodeling in Left Ventricular Function of Type 1 Diabetic Rat. Anatolian Journal of Cardiology, 2018, 19, 259-266.	0.5	8
27	Hyperglycemia-Induced Changes in ZIP7 and ZnT7 Expression Cause Zn2+ Release From the Sarco(endo)plasmic Reticulum and Mediate ER Stress in the Heart. Diabetes, 2017, 66, 1346-1358.	0.3	66
28	European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biology, 2017, 13, 94-162.	3.9	242
29	Role of Zinc Transporters in Mammalian Heart under Physiological and Pathological Conditions. Biophysical Journal, 2017, 112, 538a.	0.2	0
30	Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1335-1342.	0.7	19
31	Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology. International Journal of Molecular Sciences, 2017, 18, 2395.	1.8	30
32	Association Between β3-Adrenoceptor Activation and Intracellular FreeÂZinc Ion Increase Contributes to Hyperglycemia-Induced Cardiac ER-Stress. Biophysical Journal, 2016, 110, 433a-434a.	0.2	0
33	An Investigation on Electrical Activity and Sarcolemmal K+-Channels in Cardiomyocytes from Insulin-Resistant Rat Heart. Biophysical Journal, 2016, 110, 272a-273a.	0.2	0
34	Age-Related Changes in Electrical Activities and Micrornas of Left Ventricular Cardiomyocytes Isolated from Rat Heart. Biophysical Journal, 2016, 110, 587a.	0.2	0
35	Role of ZIP7 in Regulation of Cytosolic Free Zn2+ Level in Mammalian Cardiomyocytes. Biophysical Journal, 2016, 110, 588a.	0.2	0
36	Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes. Biological Trace Element Research, 2016, 174, 177-188.	1.9	20

#	Article	IF	CITATIONS
37	Intracellular Zn2+ Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species. Biological Trace Element Research, 2016, 169, 294-302.	1.9	31
38	Profiling of cardiac β-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 2015, 93, 517-525.	0.7	21
39	Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide. Molecular and Cellular Biochemistry, 2015, 409, 23-31.	1.4	4
40	Dynamic imaging of compartmentalised intracellular free Zn 2+ concentrations in rat ventricular cardiomyocytes. FASEB Journal, 2015, 29, 951.3.	0.2	0
41	Roles of Intracellular Free Zn 2+ on Electrical and Mechanical Activities of the Heart. FASEB Journal, 2015, 29, 1042.3.	0.2	0
42	The Role of Crossâ€links Between Endoplasmic Reticulum Stress, Oxidative stress and Mitochondrial dysfunction in Cardiomyocytes and H9c2 Cells under Hyperglycemia. FASEB Journal, 2015, 29, 1025.5.	0.2	0
43	Enhancement of Cellular Antioxidant-Defence Preserves Diastolic Dysfunction via Regulation of Both Diastolic Zn2+and Ca2+and Prevention of RyR2-Leak in Hyperglycemic Cardiomyocytes. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-15.	1.9	30
44	Intracellular Free Zinc Ion Increase Triggers Hyperglycemia-Induced Cardiomyocyte Dysfunction through Endoplasmic Reticulum Stress. Biophysical Journal, 2014, 106, 113a.	0.2	4
45	Improvement of Functional Recovery of Donor Heart Following Cold Static Storage with Doxycycline Cardioplegia. Cardiovascular Toxicology, 2014, 14, 64-73.	1.1	13
46	Beta-blocker timolol alleviates hyperglycemia-induced cardiac damage via inhibition of endoplasmic reticulum stress. Journal of Bioenergetics and Biomembranes, 2014, 46, 377-387.	1.0	23
47	Mitochondrial and ER-Targeted eCALWY Probes Reveal High Levels of Free Zn ²⁺ . ACS Chemical Biology, 2014, 9, 2111-2120.	1.6	102
48	Long-term treatment with a beta-blocker timolol attenuates renal-damage in diabetic rats via enhancing kidney antioxidant-defense system. Molecular and Cellular Biochemistry, 2014, 395, 177-186.	1.4	11
49	Regulation of cardiac β3-adrenergic receptors in hyperglycemia. Indian Journal of Biochemistry and Biophysics, 2014, 51, 483-92.	0.2	2
50	Enhancement of Antioxidant Defence Preserves RyR2 Function of Hyperglycemic Cardiomyocytes via Regulation of both Intracellular Zn2+ and Ca2+ Homeostasis. Biophysical Journal, 2013, 104, 284a-285a.	0.2	1
51	Activation of β3-Adrenoceptors Induces Increase in Intracellular Free Zinc Ion via No Signaling Pathway in Hyperglycemic Cardiomyocytes. Biophysical Journal, 2013, 104, 614a.	0.2	1
52	Cardioprotective effect of selenium via modulation of cardiac ryanodine receptor calcium release channels in diabetic rat cardiomyocytes through thioredoxin system. Journal of Nutritional Biochemistry, 2013, 24, 2110-2118.	1.9	34
53	ÄŸ-Blocker Timolol Prevents Arrhythmogenic Ca2+ Release and Normalizes Ca2+ and Zn2+ Dyshomeostasis in Hyperglycemic Rat Heart. PLoS ONE, 2013, 8, e71014.	1.1	44
54	Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. Journal of Bioenergetics and Biomembranes, 2012, 44, 281-296.	1.0	70

#	Article	IF	CITATIONS
55	Profound cardioprotection with timolol in a female rat model of aging-related altered left ventricular function. Canadian Journal of Physiology and Pharmacology, 2011, 89, 277-288.	0.7	8
56	Cardioprotective effect of propranolol on diabetes-induced altered intracellular Ca2+ signaling in rat. Journal of Bioenergetics and Biomembranes, 2011, 43, 747-756.	1.0	16
57	Age-related regulation of excitation–contraction coupling in rat heart. Journal of Physiology and Biochemistry, 2011, 67, 317-330.	1.3	9
58	Intracellular free zinc during cardiac excitation–contraction cycle: calcium and redox dependencies. Cardiovascular Research, 2011, 89, 634-642.	1.8	54
59	Timolol treatment of diabetic rats improved basal cardiac function and responses to β3―but not β1―and β2â€receptors stimulations. FASEB Journal, 2011, 25, 1098.4.	0.2	0
60	Intracellular Zn2+ Release Modulates Cardiac Ryanodine Receptor Function and Cellular Activity. Biophysical Journal, 2010, 98, 334a.	0.2	0
61	Antioxidants but not Doxycycline Treatments Restore Depressed Beta-Adrenergic Responses of the Heart in Diabetic Rats. Cardiovascular Toxicology, 2009, 9, 21-29.	1.1	17
62	Effects of Î ² -adrenergic receptor blockers on cardiac function: a comparative study in male versus female ratsThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue) Canadian Journal of Physiology and Pharmacology, 2009, 87, 310-317.	0.7	8
63	Antioxidants but not doxycycline restore depressed β-adrenergic responses of the heart in diabetic rats. Journal of Molecular and Cellular Cardiology, 2008, 44, 746.	0.9	0
64	Beneficial effects of non-selective beta blockers on mechanical and electrical activities of diabetic rat heart. Journal of Molecular and Cellular Cardiology, 2008, 44, 775.	0.9	0
65	Beneficial effects of long-term treatment with beta-adrenergic blocker on depressed heart function of female rats. Journal of Molecular and Cellular Cardiology, 2008, 44, 816.	0.9	0
66	Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3584-H3592.	1.5	32
67	Sex differences affect Ca2+ sparks parameters in normal and diabetic rat ventricular cardiomyoctes. Journal of Molecular and Cellular Cardiology, 2007, 42, S109-S110.	0.9	1
68	Sex related differential effects of omega-3E treatment on diabetes-induced left ventricular dysfunction. Journal of Molecular and Cellular Cardiology, 2007, 42, S110.	0.9	0
69	Beneficial effect of sodium selenate on vascular dysfunction in diabetic rats. Journal of Molecular and Cellular Cardiology, 2007, 42, S229.	0.9	0
70	Gender related differential effects of Omega-3E treatment on diabetes-induced left ventricular dysfunction. Molecular and Cellular Biochemistry, 2007, 304, 255-263.	1.4	31