
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55900/publications.pdf Version: 2024-02-01

YINC SHI

#	Article	IF	CITATIONS
1	Grape polysaccharides: compositional changes in grapes and wines, possible effects on wine organoleptic properties, and practical control during winemaking. Critical Reviews in Food Science and Nutrition, 2023, 63, 1119-1142.	5.4	6
2	Distal leaf removal made balanced source-sink vines, delayed ripening, and increased flavonol composition in Cabernet Sauvignon grapes and wines in the semi-arid Xinjiang. Food Chemistry, 2022, 366, 130582.	4.2	19
3	Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems. Food Chemistry, 2022, 375, 131670.	4.2	17
4	The influence of polyphenol supplementation on ester formation during red wine alcoholic fermentation. Food Chemistry, 2022, 377, 131961.	4.2	8
5	Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2022, 21, 3.	1.9	24
6	The formation mechanism of pinotin A in model wine: Experimental and theoretical investigation. Food Chemistry, 2022, 380, 132196.	4.2	5
7	Regional Variation of Chemical Characteristics in Young Marselan (Vitis vinifera L.) Red Wines from Five Regions of China. Foods, 2022, 11, 787.	1.9	9
8	Cluster spatial positions varied the phenolics profiles of â€~Cabernet Sauvignon' grapes and wines under a fan training system with multiple trunks. Food Chemistry, 2022, 387, 132930.	4.2	8
9	Effect of the Seasonal Climatic Variations on the Flavonoid Accumulation in Vitis vinifera cvs. â€~Muscat Hamburg' and â€~Victoria' Grapes under the Double Cropping System. Foods, 2022, 11, 48.	1.9	3
10	Characterization and Evolution of Volatile Compounds of Cabernet Sauvignon Wines from Two Different Clones during Oak Barrel Aging. Foods, 2022, 11, 74.	1.9	11
11	Targeted metabolomics of anthocyanin derivatives during prolonged wine aging: Evolution, color contribution and aging prediction. Food Chemistry, 2021, 339, 127795.	4.2	53
12	Evolution of malvidinâ€3â€glucoside and color charateristics of red wines during forced aging processes: Effect of (+)â€eatechin and (â^')â€epicatechin addition. Journal of Food Processing and Preservation, 2021, 45, e15177.	0.9	3
13	Effects of drying process and time of storage on fatty acid composition in raisins. Journal of Food Measurement and Characterization, 2021, 15, 2974-2983.	1.6	3
14	Drying Treatments Change the Composition of Aromatic Compounds from Fresh to Dried Centennial Seedless Grapes. Foods, 2021, 10, 559.	1.9	9
15	Characterization of key odorâ€active compounds in sweet Petit Manseng (<i>Vitis vinifera</i> L.) wine by gas chromatography–olfactometry, aroma reconstitution, and omission tests. Journal of Food Science, 2021, 86, 1258-1272.	1.5	10
16	Modification of Sensory Expression of 3-Isobutyl-2-methoxypyrazine in Wines through Blending Technique. Molecules, 2021, 26, 3172.	1.7	6
17	Comparative Analysis of Glycosidic Aroma Compound Profiling in Three Vitis vinifera Varieties by Using Ultra-High-Performance Liquid Chromatography Quadrupole-Time-of-Flight Mass Spectrometry. Frontiers in Plant Science, 2021, 12, 694979.	1.7	10
18	Microclimate changes caused by black inter-row mulch decrease flavonoids concentrations in grapes and wines under semi-arid climate. Food Chemistry, 2021, 361, 130064.	4.2	12

#	Article	IF	CITATIONS
19	Aromatic characterization of traditional Chinese wine Msalais by partial least-square regression analysis based on sensory quantitative descriptive and odor active values, aroma extract dilution analysis, and aroma recombination and omission tests. Food Chemistry, 2021, 361, 129781.	4.2	15
20	Combined Metabolite and Transcriptome Profiling Reveals the Norisoprenoid Responses in Grape Berries to Abscisic Acid and Synthetic Auxin. International Journal of Molecular Sciences, 2021, 22, 1420.	1.8	14
21	Effect of the Seasonal Climatic Variations on the Accumulation of Fruit Volatiles in Four Grape Varieties Under the Double Cropping System. Frontiers in Plant Science, 2021, 12, 809558.	1.7	5
22	An effective method for the semi-preparative isolation of high-purity anthocyanin monomers from grape pomace. Food Chemistry, 2020, 310, 125830.	4.2	33
23	Blending strategies for wine color modification â: Color improvement by blending wines of different phenolic profiles testified under extreme oxygen exposures. Food Research International, 2020, 130, 108885.	2.9	16
24	The Effect of Light Intensity on the Expression of Leucoanthocyanidin Reductase in Grapevine Calluses and Analysis of Its Promoter Activity. Genes, 2020, 11, 1156.	1.0	4
25	Engineering endogenous ABC transporter with improving ATP supply and membrane flexibility enhances the secretion of β-carotene in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2020, 13, 168.	6.2	42
26	Characterization of free and glycosidically bound volatile compounds, fatty acids, and amino acids in Vitis davidii Foex grape species native to China. Food Science and Biotechnology, 2020, 29, 1641-1653.	1.2	6
27	Influence of attenuated reflected solar radiation from the vineyard floor on volatile compounds in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Research International, 2020, 137, 109688.	2.9	19
28	Comprehensive investigation of lactones and furanones in icewines and dry wines using gas chromatography-triple quadrupole mass spectrometry. Food Research International, 2020, 137, 109650.	2.9	24
29	VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by VviGT14 in Grape Berry. Genes, 2020, 11, 485.	1.0	15
30	Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chemistry, 2020, 326, 126960.	4.2	36
31	Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidii Foex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Food Research International, 2020, 137, 109388.	2.9	29
32	Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. Frontiers in Plant Science, 2020, 11, 483.	1.7	22
33	Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate. BMC Plant Biology, 2020, 20, 59.	1.6	26
34	Impact of Drying Method on the Evaluation of Fatty Acids and Their Derived Volatile Compounds in â€Thompson Seedless' Raisins. Molecules, 2020, 25, 608.	1.7	22
35	HPLC-MS/MS-based targeted metabolomic method for profiling of malvidin derivatives in dry red wines. Food Research International, 2020, 134, 109226.	2.9	21
36	Transcription Factor VviMYB86 Oppositely Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Grape Berries. Frontiers in Plant Science, 2020, 11, 613677.	1.7	30

#	Article	IF	CITATIONS
37	Moundâ€building ants increase the proportion of Gramineae in aboveâ€ground vegetation and the soil seed bank in alpine meadows. Journal of Vegetation Science, 2020, 31, 867-876.	1.1	5
38	Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae. Molecular Biology Reports, 2019, 46, 6311-6323.	1.0	14
39	Levels of Furaneol in Msalais Wines: A Comprehensive Overview of Multiple Stages and Pathways of Its Formation during Msalais Winemaking. Molecules, 2019, 24, 3104.	1.7	5
40	Post-storage changes of volatile compounds in air- and sun-dried raisins with different packaging materials using HS-SPME with GC/MS. Food Research International, 2019, 119, 23-33.	2.9	26
41	Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of Saccharomyces cerevisiae and Aroma Compounds during Red Wine Fermentation. Molecules, 2019, 24, 538.	1.7	27
42	Transcriptional Comparison Investigating the Influence of the Addition of Unsaturated Fatty Acids on Aroma Compounds During Alcoholic Fermentation. Frontiers in Microbiology, 2019, 10, 1115.	1.5	8
43	Evolution of the aromatic profile of traditional Msalais wine during industrial production. International Journal of Food Properties, 2019, 22, 911-924.	1.3	8
44	Influence of the harvest date on berry compositions and wine profiles of Vitis vinifera L. cv. â€~Cabernet Sauvignon' under a semiarid continental climate over two consecutive years. Food Chemistry, 2019, 292, 237-246.	4.2	9
45	Flavor Profile Evolution of Bottle Aged Ros \tilde{A} $@$ and White Wines Sealed with Different Closures. Molecules, 2019, 24, 836.	1.7	8
46	Changes in global aroma profiles of Cabernet Sauvignon in response to cluster thinning. Food Research International, 2019, 122, 56-65.	2.9	30
47	Rootstock-Mediated Effects on Cabernet Sauvignon Performance: Vine Growth, Berry Ripening, Flavonoids, and Aromatic Profiles. International Journal of Molecular Sciences, 2019, 20, 401.	1.8	28
48	Characterization and differentiation of key odor-active compounds of â€~Beibinghong' icewine and dry wine by gas chromatography-olfactometry and aroma reconstitution. Food Chemistry, 2019, 287, 186-196.	4.2	55
49	Comparative physiological, metabolomic, and transcriptomic analyses reveal developmental stage-dependent effects of cluster bagging on phenolic metabolism in Cabernet Sauvignon grape berries. BMC Plant Biology, 2019, 19, 583.	1.6	37
50	Reaction kinetics of the acetaldehyde-mediated condensation between (â^')-epicatechin and anthocyanins and their effects on the color in model wine solutions. Food Chemistry, 2019, 283, 315-323.	4.2	25
51	Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review. Critical Reviews in Food Science and Nutrition, 2019, 59, 1840-1867.	5.4	63
52	Changes of free-form volatile compounds in pre-treated raisins with different packaging materials during storage. Food Research International, 2018, 107, 649-659.	2.9	35
53	The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Research International, 2018, 106, 568-579.	2.9	52
54	Effects of cluster thinning on vine photosynthesis, berry ripeness and flavonoid composition of Cabernet Sauvignon. Food Chemistry, 2018, 248, 101-110.	4.2	43

#	Article	IF	CITATIONS
55	Phenolic Analysis and Theoretic Design for Chinese Commercial Wines' Authentication. Journal of Food Science, 2018, 83, 30-38.	1.5	17
56	Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 2018, 98, 104-112.	1.7	31
57	Use of Indigenous Hanseniaspora vineae and Metschnikowia pulcherrima Co-fermentation With Saccharomyces cerevisiae to Improve the Aroma Diversity of Vidal Blanc Icewine. Frontiers in Microbiology, 2018, 9, 2303.	1.5	45
58	Use of Torulaspora delbrueckii Co-fermentation With Two Saccharomyces cerevisiae Strains With Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile. Frontiers in Microbiology, 2018, 9, 606.	1.5	61
59	Volatile composition and aromatic attributes of wine made with <i>Vitisvinifera L</i> .cv Cabernet Sauvignon grapes in the Xinjiang region of China: effect of different commercial yeasts. International Journal of Food Properties, 2018, 21, 1423-1441.	1.3	26
60	The content of linoleic acid in grape must influences the aromatic effect of branched-chain amino acids addition on red wine. Food Research International, 2018, 114, 214-222.	2.9	12
61	Comparison of transcriptional expression patterns of carotenoid metabolism in â€~Cabernet Sauvignon' grapes from two regions with distinct climate. Journal of Plant Physiology, 2017, 213, 75-86.	1.6	33
62	Free and glycosidically bound volatile compounds in sun-dried raisins made from different fragrance intensities grape varieties using a validated HS-SPME with GC–MS method. Food Chemistry, 2017, 228, 125-135.	4.2	49
63	Colorimetric study of malvidin-3- O -glucoside copigmented by phenolic compounds: The effect of molar ratio, temperature, pH, and ethanol content on color expression of red wine model solutions. Food Research International, 2017, 102, 468-477.	2.9	14
64	Comparison of phenolic and chromatic characteristics of dry red wines made from native Chinese grape species and <i>vitis vinifera</i> . International Journal of Food Properties, 2017, 20, 2134-2146.	1.3	39
65	Impact of Adding Ellagic Acid to Red Grapes on the Phenolic Composition and Chromatic Quality of Cabernet Sauvignon Wines from a Warm Climate. Journal of Food Processing and Preservation, 2017, 41, e13080.	0.9	16
66	Extensive and objective wine color classification with chromatic database and mathematical models. International Journal of Food Properties, 2017, 20, S2647-S2659.	1.3	6
67	Dissecting the Variations of Ripening Progression and Flavonoid Metabolism in Grape Berries Grown under Double Cropping System. Frontiers in Plant Science, 2017, 8, 1912.	1.7	27
68	Phenolic and Chromatic Properties of Beibinghong Red Ice Wine during and after Vinification. Molecules, 2016, 21, 431.	1.7	12
69	Varietal Dependence of GLVs Accumulation and LOX-HPL Pathway Gene Expression in Four Vitis vinifera Wine Grapes. International Journal of Molecular Sciences, 2016, 17, 1924.	1.8	21
70	The Influence of Prefermentative Addition of Gallic Acid on the Phenolic Composition and Chromatic Characteristics of Cabernet Sauvignon Wines. Journal of Food Science, 2016, 81, C1669-78.	1.5	18
71	A systematic analysis strategy for accurate detection of anthocyanin pigments in red wines. Rapid Communications in Mass Spectrometry, 2016, 30, 1619-1626.	0.7	24
72	Direct stamp of technology or origin on the genotypic and phenotypic variation of indigenous Saccharomyces cerevisiae population in a natural model of boiled grape juice fermentation into traditional Msalais wine in China. FEMS Yeast Research, 2016, 17, fow108.	1.1	5

#	Article	IF	CITATIONS
73	Striking changes in volatile profiles at sub-zero temperatures during over-ripening of â€~Beibinghong' grapes in Northeastern China. Food Chemistry, 2016, 212, 172-182.	4.2	99
74	Expression of structural genes related to anthocyanin biosynthesis of Vitis amurensis. Journal of Forestry Research, 2016, 27, 647-657.	1.7	13
75	Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels. Food Chemistry, 2016, 202, 236-246.	4.2	12
76	The color expression of copigmentation between malvidin-3-O-glucoside and three phenolic aldehydes in model solutions: The effects of pH and molar ratio. Food Chemistry, 2016, 199, 220-228.	4.2	33
77	A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors. Iranian Journal of Pharmaceutical Research, 2016, 15, 131-9.	0.3	2
78	Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015, 15, 240.	1.6	72
79	Copigmentation of malvidin-3-O-glucoside with five hydroxybenzoic acids in red wine model solutions: Experimental and theoretical investigations. Food Chemistry, 2015, 170, 226-233.	4.2	65
80	Reduction of fatty acid flux at low temperature led to enhancement of Î ² -carotene biosynthesis in recombinant Saccharomyces cerevisiae. Korean Journal of Chemical Engineering, 2015, 32, 1354-1360.	1.2	5
81	Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS–SPME with GC–MS. Food Chemistry, 2015, 177, 346-353.	4.2	58
82	Molecular and biochemical characterization of the UDP-glucose: Anthocyanin 5-O-glucosyltransferase from Vitis amurensis. Phytochemistry, 2015, 117, 363-372.	1.4	18
83	Oxidation process of dissolvable sulfide by synthesized todorokite in aqueous systems. Journal of Hazardous Materials, 2015, 290, 106-116.	6.5	24
84	Effect of training systems on fatty acids and their derived volatiles in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Chemistry, 2015, 181, 198-206.	4.2	61
85	A Review of Polyphenolics in Oak Woods. International Journal of Molecular Sciences, 2015, 16, 6978-7014.	1.8	122
86	Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. Plant Physiology and Biochemistry, 2015, 89, 123-133.	2.8	45
87	Light response and potential interacting proteins of a grape flavonoid 3′-hydroxylase gene promoter. Plant Physiology and Biochemistry, 2015, 97, 70-81.	2.8	27
88	Copigmentation between malvidin-3- O -glucoside and hydroxycinnamic acids in red wine model solutions: Investigations with experimental and theoretical methods. Food Research International, 2015, 78, 313-320.	2.9	33
89	Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries. International Journal of Molecular Sciences, 2014, 15, 21992-22010.	1.8	41
90	Phenolic Compounds from Liquidambar formosana Fruits as Monoamine Oxidase Inhibitors. Chemistry of Natural Compounds, 2014, 50, 1118-1119.	0.2	5

#	Article	IF	CITATIONS
91	Synthesis and structure–activity relationship of nuciferine derivatives as potential acetylcholinesterase inhibitors. Medicinal Chemistry Research, 2014, 23, 3178-3186.	1.1	25
92	Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chemistry, 2014, 154, 217-229.	4.2	147
93	Comparison of organic acid levels and L-IdnDH expression in Chinese-type and European-type grapes. Euphytica, 2014, 196, 63-76.	0.6	13
94	Rapid HPLC analysis of amino acids and biogenic amines in wines during fermentation and evaluation of matrix effect. Food Chemistry, 2014, 163, 6-15.	4.2	106
95	Comparison of distinct transcriptional expression patterns of flavonoid biosynthesis in Cabernet Sauvignon grapes from east andÂwest China. Plant Physiology and Biochemistry, 2014, 84, 45-56.	2.8	26
96	Regional characteristics of anthocyanin and flavonol compounds from grapes of four Vitis vinifera varieties in five wine regions of China. Food Research International, 2014, 64, 264-274.	2.9	61
97	Synthesis, Biological Activity Evaluation and Molecular Modeling Study on the New Isoconessimine Derivatives as Acetylcholinesterase Inhibitors. Chinese Journal of Chemistry, 2013, 31, 1228-1233.	2.6	2
98	Evolution of flavonols in berry skins of different grape cultivars during ripening and a comparison of two vintages. European Food Research and Technology, 2012, 235, 1187-1197.	1.6	27
99	Anthocyanins and Their Variation in Red Wines I. Monomeric Anthocyanins and Their Color Expression. Molecules, 2012, 17, 1571-1601.	1.7	303
100	Anthocyanins and Their Variation in Red Wines II. Anthocyanin Derived Pigments and Their Color Evolution. Molecules, 2012, 17, 1483-1519.	1.7	229
101	Isolation and characterization of two hydroperoxide lyase genes from grape berries. Molecular Biology Reports, 2012, 39, 7443-7455.	1.0	58
102	Effects of the maceration enzymes on evolution of pyranoanthocyanins and cinnamic acids during the cabernet gernischet (Vitis vinifera L. cv.) red wine making. Food Science and Biotechnology, 2010, 19, 603-610.	1.2	5
103	Changes of Flavan-3-ols with Different Degrees of Polymerization in Seeds of â€~Shiraz', â€~Cabernet Sauvignon' and â€~Marselan' Grapes after Veraison. Molecules, 2010, 15, 7763-7774.	1.7	12
104	An Extraction Method for Obtaining the Maximum Non-Anthocyanin Phenolics from Grape Berry Skins. Analytical Letters, 2010, 43, 776-785.	1.0	21
105	Different Anthocyanin Profiles of the Skin and the Pulp of Yan73 (Muscat Hamburg × Alicante) Tj ETQq1 1 0.	784314 rgB1 1.7	「 /Overlock] 104
106	Biosynthesis and Genetic Regulation of Proanthocyanidins in Plants. Molecules, 2008, 13, 2674-2703.	1.7	176