Katarina Varnäs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/558980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clinical Cancer Research, 2016, 22, 5130-5140.	3.2	554
2	Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Human Brain Mapping, 2004, 22, 246-260.	1.9	278
3	Clinical Validation of ¹⁸ F-AZD4694, an Amyloid-β–Specific PET Radioligand. Journal of Nuclear Medicine, 2012, 53, 415-424.	2.8	204
4	The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Science Advances, 2018, 4, eaat1719.	4.7	201
5	Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson's disease. Brain, 2015, 138, 2687-2700.	3.7	168
6	Discovery and Evaluation of Clinical Candidate AZD3759, a Potent, Oral Active, Central Nervous System-Penetrant, Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Journal of Medicinal Chemistry, 2015, 58, 8200-8215.	2.9	113
7	Distribution of 5-HT7 receptors in the human brain: a preliminary autoradiographic study using []SB-269970. Neuroscience Letters, 2004, 367, 313-316.	1.0	111
8	Preclinical Comparison of the Blood–brain barrier Permeability of Osimertinib with Other EGFR TKIs. Clinical Cancer Research, 2021, 27, 189-201.	3.2	106
9	Autoradiographic mapping of 5-HT1B and 5-HT1D receptors in the post mortem human brain using [3H]GR 125743. Brain Research, 2001, 915, 47-57.	1.1	99
10	[11C]AZ10419369: A selective 5-HT1B receptor radioligand suitable for positron emission tomography (PET). Characterization in the primate brain. NeuroImage, 2008, 41, 1075-1085.	2.1	78
11	Arterial Input Function Derived from Pairwise Correlations Between PET-image Voxels. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1058-1065.	2.4	76
12	Quantitative Analysis of [¹¹ C]AZ10419369 Binding to 5-HT _{1B} Receptors in Human Brain. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 113-123.	2.4	72
13	Distribution of 5-HT4 receptors in the postmortem human brain—an autoradiographic study using [125I]SB 207710. European Neuropsychopharmacology, 2003, 13, 228-234.	0.3	67
14	The 5-HT1B receptor - a potential target for antidepressant treatment. Psychopharmacology, 2018, 235, 1317-1334.	1.5	56
15	PET imaging of [11C]PBR28 in Parkinson's disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 367-375.	3.3	50
16	Regional expression of 5-HT1Breceptor mRNA in the human brain. Synapse, 2005, 56, 21-28.	0.6	45
17	A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 — Estimating occupancy in the absence of a reference region. NeuroImage, 2013, 82, 160-169.	2.1	40
18	Modeling of PET data in CNS drug discovery and development. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40, 267-279.	0.8	37

Katarina VarnÃ**s**

#	Article	IF	CITATIONS
19	A PET study in healthy subjects of brain exposure of ¹¹ C-labelled osimertinib – A drug intended for treatment of brain metastases in non-small cell lung cancer. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 799-807.	2.4	36
20	Brain exposure of the ATM inhibitor AZD1390 in humans—a positron emission tomography study. Neuro-Oncology, 2021, 23, 687-696.	0.6	35
21	Large Variation in Brain Exposure of Reference CNS Drugs: a PET Study in Nonhuman Primates. International Journal of Neuropsychopharmacology, 2015, 18, pyv036.	1.0	34
22	Dose-dependent binding of AZD3783 to brain 5-HT1B receptors in non-human primates and human subjects: a positron emission tomography study with [11C]AZ10419369. Psychopharmacology, 2011, 213, 533-545.	1.5	29
23	New halogenated [11C]WAY analogues, [11C]6FPWAY and [11C]6BPWAY—Radiosynthesis and assessment as radioligands for the study of brain 5-HT1A receptors in living monkey. Nuclear Medicine and Biology, 2001, 28, 177-185.	0.3	28
24	Brain-derived neurotrophic factor polymorphisms and frontal cortex morphology in schizophrenia. Psychiatric Genetics, 2008, 18, 177-183.	0.6	27
25	Evaluation of Two Automated Methods for PET Region of Interest Analysis. Neuroinformatics, 2014, 12, 551-562.	1.5	27
26	Radiosynthesis of the candidate βâ€amyloid radioligand [¹¹ C]AZD2184: Positron emission tomography examination and metabolite analysis in cynomolgus monkeys. Synapse, 2010, 64, 733-741.	0.6	26
27	Positron emission tomography imaging of 5-hydroxytryptamine1B receptors in Parkinson's disease. Neurobiology of Aging, 2014, 35, 867-875.	1.5	25
28	Cerebellar volumes in men with schizophrenia and alcohol dependence. Psychiatry and Clinical Neurosciences, 2007, 61, 326-329.	1.0	23
29	Low brain CB1 receptor occupancy by a second generation CB1 receptor antagonist TM38837 in comparison with rimonabant in nonhuman primates: A PET study. Synapse, 2014, 68, 89-97.	0.6	23
30	Development of rapid multistep carbon-11 radiosynthesis of the myeloperoxidase inhibitor AZD3241 to assess brain exposure by PET microdosing. Nuclear Medicine and Biology, 2015, 42, 555-560.	0.3	21
31	GABAA receptor occupancy by subtype selective GABAAα2,3 modulators: PET studies in humans. Psychopharmacology, 2017, 234, 707-716.	1.5	21
32	Longitudinal Small-Animal PET Imaging of the zQ175 Mouse Model of Huntington Disease Shows In Vivo Changes of Molecular Targets in the Striatum and Cerebral Cortex. Journal of Nuclear Medicine, 2017, 58, 617-622.	2.8	19
33	Grey and White Matter Proportional Relationships in the Cerebellar Vermis Altered in Schizophrenia. Cerebellum, 2009, 8, 52-60.	1.4	17
34	Antidepressant effects on serotonin 1A/1B receptors in the rat brain using a gene x environment model. Neuroscience Letters, 2014, 559, 163-168.	1.0	16
35	Synthesis and preclinical evaluation of [18F]FSL25.1188, a reversible PET radioligand for monoamine oxidase-B. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1624-1627.	1.0	15
36	[¹¹ C]CHDI-626, a PET Tracer Candidate for Imaging Mutant Huntingtin Aggregates with Reduced Binding to AD Pathological Proteins. Journal of Medicinal Chemistry, 2021, 64, 12003-12021.	2.9	15

Katarina VarnÃ**y**

#	Article	IF	CITATIONS
37	Radiolabeling of the cannabinoid receptor agonist AZD1940 with carbon-11 and PET microdosing in non-human primate. Nuclear Medicine and Biology, 2013, 40, 410-414.	0.3	14
38	Autoradiographic mapping of synaptic vesicle glycoprotein 2A in nonâ€human primate and human brain. Synapse, 2020, 74, e22157.	0.6	14
39	Amphetamine Decreases Â2C-Adrenoceptor Binding of [11C]ORM-13070: A PET Study in the Primate Brain. International Journal of Neuropsychopharmacology, 2015, 18, pyu081-pyu081.	1.0	13
40	The metabotropic glutamate receptor 5 radioligand [11C]AZD9272 identifies unique binding sites in primate brain. Neuropharmacology, 2018, 135, 455-463.	2.0	13
41	Synthesis and in vitro autoradiographic evaluation of a novel high-affinity radioiodinated ligand for imaging brain cannabinoid subtype-1 receptors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6209-6212.	1.0	12
42	A PET study with [¹¹ C]AZ10419369 to determine brain 5-HT _{1B} receptor occupancy of zolmitriptan in healthy male volunteers. Cephalalgia, 2013, 33, 853-860.	1.8	12
43	A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates. Neuropharmacology, 2016, 101, 519-530.	2.0	12
44	The pro-psychotic metabotropic glutamate receptor compounds fenobam and AZD9272 share binding sites with monoamine oxidase-B inhibitors in humans. Neuropharmacology, 2020, 162, 107809.	2.0	10
45	Altered striatal dopamine levels in Parkinson's disease VPS35 D620N mutant transgenic aged mice. Molecular Brain, 2020, 13, 164.	1.3	10
46	Investigating possible subtypes of schizophrenia patients and controls based on brain cortical thickness. Psychiatry Research - Neuroimaging, 2008, 164, 254-264.	0.9	8
47	Radiosynthesis and evaluation of new α1-adrenoceptor antagonists as PET radioligands for brain imaging. Nuclear Medicine and Biology, 2013, 40, 747-754.	0.3	7
48	Discovery and Preclinical Validation of [11C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor. ACS Chemical Neuroscience, 2016, 7, 177-184.	1.7	7
49	Effects of sevoflurane anaesthesia on radioligand binding to monoamine oxidase-B inÂvivo. British Journal of Anaesthesia, 2021, 126, 238-244.	1.5	7
50	Discovery of a Novel Muscarinic Receptor PET Radioligand with Rapid Kinetics in the Monkey Brain. ACS Chemical Neuroscience, 2018, 9, 224-229.	1.7	6
51	In vitro phosphodiesterase 10A (PDE10A) binding in whole hemisphere human brain using the PET radioligand [18F]MNI-659. Brain Research, 2019, 1711, 140-145.	1.1	6
52	A positron emission tomography study of the serotonin1B receptor effect of electroconvulsive therapy for severe major depressive episodes. Journal of Affective Disorders, 2021, 294, 645-651.	2.0	6
53	Local and covariate-modulated false discovery rates applied in neuroimaging. NeuroImage, 2009, 47, 213-219.	2.1	4
54	Integrated Strategy for Use of Positron Emission Tomography in Nonhuman Primates to Confirm Multitarget Occupancy of Novel Psychotropic Drugs: An Example with AZD3676. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 464-471.	1.3	4

Katarina VarnÃ**y**

#	Article	IF	CITATIONS
55	Synthesis, Biodistribution, and Radiation Dosimetry of a Novel mGluR5 Radioligand: ¹⁸ F-AZD9272. ACS Chemical Neuroscience, 2020, 11, 1048-1057.	1.7	3
56	Estimation of drug receptor occupancy when nonâ€displaceable binding differs between brain regions – extending the simplified reference tissue model. British Journal of Clinical Pharmacology, 2015, 80, 116-127.	1.1	1
57	Neurokinin-3 Receptor Binding in Guinea Pig, Monkey, and Human Brain: In Vitro and in Vivo Imaging Using the Novel Radioligand, [¹⁸ F]Lu AF10628. International Journal of Neuropsychopharmacology, 2016, 19, pyw023.	1.0	1
58	PET microdosing of CNS drugs. Clinical and Translational Imaging, 2017, 5, 291-298.	1.1	1
59	Associations between cognition and serotonin receptor 1B binding in patients with major depressive disorder – A pilot study. Psychiatry Research - Neuroimaging, 2017, 267, 15-21.	0.9	1
60	Serotonin 1B receptor density mapping of the human brainstem using positron emission tomography and autoradiography. Journal of Cerebral Blood Flow and Metabolism, 2021, , 0271678X2110491.	2.4	1