
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5589628/publications.pdf Version: 2024-02-01

HON-MING LAM

#	Article	IF	CITATIONS
1	Changes in epigenetic features in legumes under abiotic stresses. Plant Genome, 2023, 16, .	2.8	5
2	Sequencing the USDA core soybean collection reveals gene loss during domestication and breeding. Plant Genome, 2022, 15, e20109.	2.8	53
3	Oxford Nanopore Technology: revolutionizing genomics research in plants. Trends in Plant Science, 2022, 27, 510-511.	8.8	5
4	Differential microRNA expression, microRNA arm switching, and microRNA:long noncoding RNA interaction in response to salinity stress in soybean. BMC Genomics, 2022, 23, 65.	2.8	13
5	Primingâ€induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. Plant Journal, 2022, 109, 1575-1590.	5.7	22
6	The Identification of MATE Antisense Transcripts in Soybean Using Strand-Specific RNA-Seq Datasets. Genes, 2022, 13, 228.	2.4	1
7	PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications, 2022, 13, 477.	12.8	81
8	The Poly-Glutamate Motif of GmMATE4 Regulates Its Isoflavone Transport Activity. Membranes, 2022, 12, 206.	3.0	4
9	Soybean secondary metabolites and flavors: The art of compromise among climate, natural enemies, and human culture. Advances in Botanical Research, 2022, , 295-347.	1.1	3
10	Root physiology and morphology of soybean in relation to stress tolerance. Advances in Botanical Research, 2022, , 77-103.	1.1	2
11	Genetic regulations of the oil and protein contents in soybean seeds and strategies for improvement. Advances in Botanical Research, 2022, , .	1.1	1
12	Genomic research on soybean and its impact on molecular breeding. Advances in Botanical Research, 2022, , .	1.1	2
13	Pursuing greener farming by clarifying legume-insect pest interactions and developing marker-assisted molecular breeding. Advances in Botanical Research, 2022, , 211-258.	1.1	1
14	Using the Knowledge of Post-transcriptional Regulations to Guide Gene Selections for Molecular Breeding in Soybean. Frontiers in Plant Science, 2022, 13, 867731.	3.6	0
15	The Tiny Companion Matters: The Important Role of Protons in Active Transports in Plants. International Journal of Molecular Sciences, 2022, 23, 2824.	4.1	3
16	The Roles of Multidrug and Toxic Compound Extrusion (MATE) Transporters in Regulating Agronomic Traits. Agronomy, 2022, 12, 878.	3.0	5
17	Oxylipin signaling in salt-stressed soybean is modulated by ligand-dependent interaction of Class II acyl-CoA-binding proteins with lipoxygenase. Plant Cell, 2022, 34, 1117-1143.	6.6	10
18	Protoplasts: small cells with big roles in plant biology. Trends in Plant Science, 2022, 27, 828-829.	8.8	16

#	Article	IF	CITATIONS
19	Identification of the accessible chromatin regions in six tissues in the soybean. Genomics, 2022, 114, 110364.	2.9	7
20	The Seed Quality Assurance Regulations and Certification System in Soybean Production—A Chinese and International Perspective. Agriculture (Switzerland), 2022, 12, 624.	3.1	2
21	Genomic Studies of Plant-Environment Interactions. International Journal of Molecular Sciences, 2022, 23, 5871.	4.1	3
22	AtGAP1 Promotes the Resistance to Pseudomonas syringae pv. tomato DC3000 by Regulating Cell-Wall Thickness and Stomatal Aperture in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 7540.	4.1	2
23	The soybean plasma membrane″ocalized cation/H + exchanger GmCHX20a plays a negative role under salt stress. Physiologia Plantarum, 2021, 171, 714-727.	5.2	15
24	Root system architecture, physiological and transcriptional traits of soybean (<scp><i>Glycine) Tj ETQq0 0 0 rgB</i></scp>	T /Overloc	k 10 Tf 50 54
25	Genetic architecture of wild soybean (Glycine soja Sieb. and Zucc.) populations originating from different East Asian regions. Genetic Resources and Crop Evolution, 2021, 68, 1577-1588.	1.6	2
26	An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics, 2021, 113, 344-355.	2.9	5
27	GmDNJ1, a type″ heat shock protein 40 (HSP40), is responsible for both Growth and heat tolerance in soybean. Plant Direct, 2021, 5, e00298.	1.9	15
28	Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 2021, 257, 153351.	3.5	90
29	Genomic dissection of widely planted soybean cultivars leads to a new breeding strategy of crops in the post-genomic era. Crop Journal, 2021, 9, 1079-1087.	5.2	18
30	Galactolipid and Phospholipid Profile and Proteome Alterations in Soybean Leaves at the Onset of Salt Stress. Frontiers in Plant Science, 2021, 12, 644408.	3.6	10
31	Drivers of carbon flux in drip irrigation maize fields in northwest China. Carbon Balance and Management, 2021, 16, 12.	3.2	13
32	Genomic Features of Open Chromatin Regions (OCRs) in Wild Soybean and Their Effects on Gene Expressions. Genes, 2021, 12, 640.	2.4	9
33	In silico Analysis of Acyl-CoA-Binding Protein Expression in Soybean. Frontiers in Plant Science, 2021, 12, 646938.	3.6	8
34	Differentially expressed microRNAs that target functional genes in mature soybean nodules. Plant Genome, 2021, 14, e20103.	2.8	8
35	Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biology, 2021, 22, 160.	8.8	35
36	Rhizospheric Communication through Mobile Genetic Element Transfers for the Regulation of Microbe–Plant Interactions. Biology, 2021, 10, 477.	2.8	7

#	Article	IF	CITATIONS
37	Histone modifications and chromatin remodelling in plants in response to salt stress. Physiologia Plantarum, 2021, 173, 1495-1513.	5.2	20
38	Increased copy number of <i>gibberellin 2â€oxidase 8</i> genes reduced trailing growth and shoot length during soybean domestication. Plant Journal, 2021, 107, 1739-1755.	5.7	24
39	AtHDA6 functions as an H3K18ac eraser to maintain pericentromeric CHG methylation in Arabidopsis thaliana. Nucleic Acids Research, 2021, 49, 9755-9767.	14.5	6
40	lsotopically Dimethyl Labeling-Based Quantitative Proteomic Analysis of Phosphoproteomes of Soybean Cultivars. Biomolecules, 2021, 11, 1218.	4.0	5
41	How noncoding open chromatin regions shape soybean domestication. Trends in Plant Science, 2021, 26, 876-878.	8.8	1
42	Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.	17.5	17
43	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	6.7	82
44	MATE-Type Proteins Are Responsible for Isoflavone Transportation and Accumulation in Soybean Seeds. International Journal of Molecular Sciences, 2021, 22, 12017.	4.1	14
45	The Impact of Bedbug (Cimex spp.) Bites on Self-Rated Health and Average Hours of Sleep per Day: A Cross-Sectional Study among Hong Kong Bedbug Victims. Insects, 2021, 12, 1027.	2.2	6
46	Characterization of Root System Architecture Traits in Diverse Soybean Genotypes Using a Semi-Hydroponic System. Plants, 2021, 10, 2781.	3.5	19
47	Dietary shifts can reduce premature deaths related to particulate matter pollution in China. Nature Food, 2021, 2, 997-1004.	14.0	19
48	Impacts of genomic research on soybean improvement in East Asia. Theoretical and Applied Genetics, 2020, 133, 1655-1678.	3.6	48
49	Terpenes and Terpenoids in Plants: Interactions with Environment and Insects. International Journal of Molecular Sciences, 2020, 21, 7382.	4.1	172
50	The Effects of Domestication on Secondary Metabolite Composition in Legumes. Frontiers in Genetics, 2020, 11, 581357.	2.3	42
51	Evolutionary Timeline and Genomic Plasticity Underlying the Lifestyle Diversity in <i>Rhizobiales</i> . MSystems, 2020, 5, .	3.8	45
52	New insights into Arabidopsis transcriptome complexity revealed by direct sequencing of native RNAs. Nucleic Acids Research, 2020, 48, 7700-7711.	14.5	57
53	A Rice Immunophilin Homolog, OsFKBP12, Is a Negative Regulator of Both Biotic and Abiotic Stress Responses. International Journal of Molecular Sciences, 2020, 21, 8791.	4.1	5
54	Photodynamic therapy on prostate cancer cells involve mitochondria membrane proteins. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101933.	2.6	4

#	Article	IF	CITATIONS
55	The histone modification H3K4me3 marks functional genes in soybean nodules. Genomics, 2020, 112, 5282-5294.	2.9	8
56	The Impacts of Domestication and Agricultural Practices on Legume Nutrient Acquisition Through Symbiosis With Rhizobia and Arbuscular Mycorrhizal Fungi. Frontiers in Genetics, 2020, 11, 583954.	2.3	20
57	The Modification of Circadian Clock Components in Soybean During Domestication and Improvement. Frontiers in Genetics, 2020, 11, 571188.	2.3	19
58	Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. International Journal of Molecular Sciences, 2020, 21, 9294.	4.1	10
59	Differential RNA Editing and Intron Splicing in Soybean Mitochondria during Nodulation. International Journal of Molecular Sciences, 2020, 21, 9378.	4.1	3
60	How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China. Agricultural Water Management, 2020, 239, 106256.	5.6	44
61	Understanding the Composition, Biosynthesis, Accumulation and Transport of Flavonoids in Crops for the Promotion of Crops as Healthy Sources of Flavonoids for Human Consumption. Nutrients, 2020, 12, 1717.	4.1	74
62	Korean Wild Soybeans (Glycine soja Sieb & Zucc.): Geographic Distribution and Germplasm Conservation. Agronomy, 2020, 10, 214.	3.0	14
63	Analysis of Soybean Long Non-Coding RNAs Reveals a Subset of Small Peptide-Coding Transcripts. Plant Physiology, 2020, 182, 1359-1374.	4.8	46
64	Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC Plant Biology, 2020, 20, 86.	3.6	84
65	ABAS1 from soybean is a 1R-subtype MYB transcriptional repressor that enhances ABA sensitivity. Journal of Experimental Botany, 2020, 71, 2970-2981.	4.8	9
66	Crystal structures of REF6 and its complex with DNA reveal diverse recognition mechanisms. Cell Discovery, 2020, 6, 17.	6.7	18
67	Metabolic Analyses of Nitrogen Fixation in the Soybean Microsymbiont Sinorhizobium fredii Using Constraint-Based Modeling. MSystems, 2020, 5, .	3.8	20
68	GMOs, Biodiversity and Ecosystem Processes. Topics in Biodiversity and Conservation, 2020, , 3-17.	1.0	8
69	A structure model explaining the binding between a ubiquitous unconventional G-protein (OsYchF1) and a plant-specific C2-domain protein (OsGAP1) from rice. Biochemical Journal, 2020, 477, 3935-3949.	3.7	5
70	Legume biofortification is an underexploited strategy for combatting hidden hunger. Plant, Cell and Environment, 2019, 42, 52-70.	5.7	72
71	Construction and comparison of three referenceâ€quality genome assemblies for soybean. Plant Journal, 2019, 100, 1066-1082.	5.7	113
72	Editorial: Metabolic Adjustments and Gene Expression Reprogramming for Symbiotic Nitrogen Fixation in Legume Nodules. Frontiers in Plant Science, 2019, 10, 898.	3.6	6

#	Article	IF	CITATIONS
73	Co-benefits of sustainable farming methods to safeguard food security and environmental health in China: a modelling study. Lancet Planetary Health, The, 2019, 3, S10.	11.4	0
74	Signal Transduction Pathways in Plants for Resistance against Pathogens. International Journal of Molecular Sciences, 2019, 20, 2335.	4.1	10
75	Co-benefits of intercropping as a sustainable farming method for safeguarding both food security and air quality. Environmental Research Letters, 2019, 14, 044011.	5.2	37
76	A reference-grade wild soybean genome. Nature Communications, 2019, 10, 1216.	12.8	183
77	Reference-Based Identification of Long Noncoding RNAs in Plants with Strand-Specific RNA-Sequencing Data. Methods in Molecular Biology, 2019, 1933, 245-255.	0.9	1
78	Identification and functional characterization of the chloride channel gene, GsCLC-c2 from wild soybean. BMC Plant Biology, 2019, 19, 121.	3.6	43
79	Flow Cytometric Detection of Newly-formed Breast Cancer Stem Cell-like Cells After Apoptosis Reversal. Journal of Visualized Experiments, 2019, , .	0.3	5
80	Possible Roles of Rhizospheric and Endophytic Microbes to Provide a Safe and Affordable Means of Crop Biofortification. Agronomy, 2019, 9, 764.	3.0	38
81	High-Throughput Mass Spectrometric Analysis of the Whole Proteome and Secretome From Sinorhizobium fredii Strains CCBAU25509 and CCBAU45436. Frontiers in Microbiology, 2019, 10, 2569.	3.5	17
82	Legumes—The art and science of environmentally sustainable agriculture. Plant, Cell and Environment, 2019, 42, 1-5.	5.7	28
83	Characterization of Two Growth Period QTLs Reveals Modification of <i>PRR3</i> Genes During Soybean Domestication. Plant and Cell Physiology, 2019, 60, 407-420.	3.1	45
84	Modelling predicts that soybean is poised to dominate crop production across <scp>A</scp> frica. Plant, Cell and Environment, 2019, 42, 373-385.	5.7	47
85	Transcriptomic reprogramming in soybean seedlings under salt stress. Plant, Cell and Environment, 2019, 42, 98-114.	5.7	111
86	Apoptosis Reversal Promotes Cancer Stem Cell-Like Cell Formation. Neoplasia, 2018, 20, 295-303.	5.3	37
87	Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. Frontiers in Plant Science, 2018, 9, 1860.	3.6	109
88	Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses. International Journal of Molecular Sciences, 2018, 19, 3206.	4.1	368
89	miRNA-Mediated Interactions in and between Plants and Insects. International Journal of Molecular Sciences, 2018, 19, 3239.	4.1	23
90	Proteomic analysis reveals that pheophorbide a-mediated photodynamic treatment inhibits prostate cancer growth by hampering GDP-GTP exchange of ras-family proteins. Photodiagnosis and Photodynamic Therapy, 2018, 23, 35-39.	2.6	7

#	Article	IF	CITATIONS
91	Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genetics, 2018, 14, e1007428.	3.5	50
92	Signal Transduction in Plant–Nematode Interactions. International Journal of Molecular Sciences, 2018, 19, 1648.	4.1	33
93	Determinants of pesticide application: an empirical analysis with theory of planned behaviour. China Agricultural Economic Review, 2018, 10, 608-625.	3.7	31
94	Towards improving the salt tolerance of soybean. Burleigh Dodds Series in Agricultural Science, 2018, , 191-215.	0.2	1
95	A seed change in our understanding of legume biology from genomics to the efficient cooperation between nodulation and arbuscular mycorrhizal fungi. Plant, Cell and Environment, 2018, 41, 1949-1954.	5.7	3
96	Using genomic information to improve soybean adaptability to climate change. Journal of Experimental Botany, 2017, 68, erw348.	4.8	25
97	A general framework incorporating knowledge, risk perception and practices to eliminate pesticide residues in food: A Structural Equation Modelling analysis based on survey data of 986 Chinese farmers. Food Control, 2017, 80, 143-150.	5.5	53
98	MicroRNAs regulate the sesquiterpenoid hormonal pathway in <i>Drosophila</i> and other arthropods. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171827.	2.6	20
99	Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement. International Journal of Molecular Sciences, 2017, 18, 328.	4.1	58
100	Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress. International Journal of Molecular Sciences, 2017, 18, 818.	4.1	50
101	Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages. International Journal of Molecular Sciences, 2016, 17, 2043.	4.1	7
102	QTLs Regulating the Contents of Antioxidants, Phenolics, and Flavonoids in Soybean Seeds Share a Common Genomic Region. Frontiers in Plant Science, 2016, 7, 854.	3.6	25
103	GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean. Frontiers in Plant Science, 2016, 7, 1082.	3.6	89
104	Use of proteomics to evaluate soybean response under abiotic stresses. , 2016, , 79-105.		15
105	Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genomics, 2016, 17, 402.	2.8	47
106	Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity, 2016, 117, 84-93.	2.6	57
107	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	9.3	529
108	ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2648-2653.	7.1	31

#	Article	IF	CITATIONS
109	Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods. International Journal of Molecular Sciences, 2015, 16, 24532-24554.	4.1	42
110	Genome of the Rusty Millipede, Trigoniulus corallinus, Illuminates Diplopod, Myriapod, and Arthropod Evolution. Genome Biology and Evolution, 2015, 7, 1280-1295.	2.5	21
111	How did arthropod sesquiterpenoids and ecdysteroids arise? Comparison of hormonal pathway genes in non-insect arthropod genomes. Genome Biology and Evolution, 2015, 7, evv120.	2.5	64
112	Sequencing consolidates molecular markers with plant breeding practice. Theoretical and Applied Genetics, 2015, 128, 779-795.	3.6	96
113	Impacts of nucleotide fixation during soybean domestication and improvement. BMC Plant Biology, 2015, 15, 81.	3.6	22
114	Site-directed Mutagenesis Shows the Significance of Interactions with Phospholipids and the G-protein OsYchF1 for the Physiological Functions of the Rice GTPase-activating Protein 1 (OsGAP1). Journal of Biological Chemistry, 2015, 290, 23984-23996.	3.4	13
115	Responses in gas exchange and water status between drought-tolerant and -susceptible soybean genotypes with ABA application. Crop Journal, 2015, 3, 500-506.	5.2	40
116	Paraformaldehyde Fixation May Lead to Misinterpretation of the Subcellular Localization of Plant High Mobility Group Box Proteins. PLoS ONE, 2015, 10, e0135033.	2.5	8
117	Using RNA-Seq Data to Evaluate Reference Genes Suitable for Gene Expression Studies in Soybean. PLoS ONE, 2015, 10, e0136343.	2.5	64
118	More Health Hazards Are Expected if Melamine Wastes Are Allowed to Be Used as Fertilizers. Current Nutrition and Food Science, 2015, 10, 264-267.	0.6	1
119	Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. Crop Journal, 2014, 2, 366-380.	5.2	51
120	A Putative Lambda Class Glutathione S-Transferase Enhances Plant Survival under Salinity Stress. Plant and Cell Physiology, 2014, 55, 570-579.	3.1	73
121	Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications, 2014, 5, 4340.	12.8	332
122	Ectopic expression of <i>Gm<scp>PAP</scp>3</i> enhances salt tolerance in rice by alleviating oxidative damage. Plant Breeding, 2014, 133, 348-355.	1.9	9
123	The GCN2 homologue in <i>Arabidopsis thaliana</i> interacts with uncharged tRNA and uses Arabidopsis eIF2α molecules as direct substrates. Plant Biology, 2013, 15, 13-18.	3.8	48
124	Food supply and food safety issues in China. Lancet, The, 2013, 381, 2044-2053.	13.7	322
125	Comparative Metabolomics in <i>Glycine max</i> and <i>Glycine soja</i> under Salt Stress To Reveal the Phenotypes of Their Offspring. Journal of Agricultural and Food Chemistry, 2013, 61, 8711-8721.	5.2	88
126	The GmCLC1 protein from soybean functions as a chloride ion transporter. Journal of Plant Physiology, 2013, 170, 101-104.	3.5	32

#	Article	IF	CITATIONS
127	Photodynamic therapy induced cell death of hormone insensitive prostate cancer PC-3 cells with autophagic characteristics. Photodiagnosis and Photodynamic Therapy, 2013, 10, 278-287.	2.6	28
128	Silicon Era of Carbon-Based Life: Application of Genomics and Bioinformatics in Crop Stress Research. International Journal of Molecular Sciences, 2013, 14, 11444-11483.	4.1	8
129	The unconventional <scp>P</scp> â€loop <scp>NTPase OsYchF1</scp> and its regulator <scp>OsGAP1</scp> play opposite roles in salinity stress tolerance. Plant, Cell and Environment, 2013, 36, 2008-2020.	5.7	41
130	GmFT2a Polymorphism and Maturity Diversity in Soybeans. PLoS ONE, 2013, 8, e77474.	2.5	18
131	GmSAL1 Hydrolyzes Inositol-1,4,5-Trisphosphate and Regulates Stomatal Closure in Detached Leaves and Ion Compartmentalization in Plant Cells. PLoS ONE, 2013, 8, e78181.	2.5	9
132	Genome-Wide Characterization of Nonreference Transposons Reveals Evolutionary Propensities of Transposons in Soybean. Plant Cell, 2012, 24, 4422-4436.	6.6	51
133	Recent Developments of Genomic Research in Soybean. Journal of Genetics and Genomics, 2012, 39, 317-324.	3.9	45
134	Expression of an apoplastâ€localized BURPâ€domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant, Cell and Environment, 2012, 35, 1932-1947.	5.7	86
135	GmPHD5 acts as an important regulator for crosstalk between histone H3K4 di-methylation and H3K14 acetylation in response to salinity stress in soybean. BMC Plant Biology, 2011, 11, 178.	3.6	34
136	Photo-activated pheophorbide a inhibits the growth of prostate cancer cells. Laser Physics, 2011, 21, 1670-1674.	1.2	7
137	Rice Hypersensitive Induced Reaction Protein 1 (OsHIR1) associates with plasma membrane and triggers hypersensitive cell death. BMC Plant Biology, 2010, 10, 290.	3.6	70
138	Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 2010, 42, 1053-1059.	21.4	987
139	An Ancient P-Loop GTPase in Rice Is Regulated by a Higher Plant-specific Regulatory Protein. Journal of Biological Chemistry, 2010, 285, 37359-37369.	3.4	41
140	Biochemical and Molecular Characterization of PvPAP3, a Novel Purple Acid Phosphatase Isolated from Common Bean Enhancing Extracellular ATP Utilization Â. Plant Physiology, 2010, 152, 854-865.	4.8	132
141	Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications. BMC Plant Biology, 2009, 9, 98.	3.6	39
142	A novel simple extracellular leucineâ€rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitiveâ€induced reaction protein 1 (OsHIR1). Plant, Cell and Environment, 2009, 32, 1804-1820.	5.7	44
143	High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of â€ ⁻ Piâ€ŧolerant' soybean. Physiologia Plantarum, 2009, 135, 412-425.	5.2	29
144	Salt Tolerance in Soybean. Journal of Integrative Plant Biology, 2008, 50, 1196-1212.	8.5	227

#	Article	IF	CITATIONS
145	Ectopic expression of <i>GmPAP3</i> alleviates oxidative damage caused by salinity and osmotic stresses. New Phytologist, 2008, 178, 80-91.	7.3	76
146	Constitutive expression of a rice GTPaseâ€activating protein induces defense responses. New Phytologist, 2008, 179, 530-545.	7.3	44
147	Comparative Metabolic Profiling Reveals Secondary Metabolites Correlated with Soybean Salt Tolerance. Journal of Agricultural and Food Chemistry, 2008, 56, 11132-11138.	5.2	60
148	Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 2008, 59, 2903-2903.	4.8	0
149	Expression of a RING-HC protein from rice improves resistance to Pseudomonas syringae pv. tomato DC3000 in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 2007, 58, 4147-4159.	4.8	38
150	Hormonal changes are related to the poor grain filling in the inferior spikelets of rice cultivated under non-flooded and mulched condition. Field Crops Research, 2007, 101, 53-61.	5.1	62
151	Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 2007, 58, 1207-1217.	4.8	208
152	Putative Nitrogen Sensing Systems in Higher Plants. Journal of Integrative Plant Biology, 2006, 48, 873-888.	8.5	27
153	Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. Plant, Cell and Environment, 2006, 29, 1122-1137.	5.7	148
154	Correlation between AS1 Gene Expression and Seed Protein Contents in Different Soybean (Glycine) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
155	In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean (Glycine max [L.]) Tj ETQ	q1 <u>1</u> 0.784	1314 rgBT /C
156	Effects of salinity on activities of H+ -ATPase, H+ -PPase and membrane lipid composition in plasma membrane and tonoplast vesicles isolated from soybean (Glycine max L.) seedlings. Journal of Environmental Sciences, 2005, 17, 259-62.	6.1	10
157	Correlation of ASN2 Gene Expression with Ammonium Metabolism in Arabidopsis. Plant Physiology, 2004, 134, 332-338.	4.8	105
158	GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 2003, 318, 103-111.	2.2	111
159	Overexpression of the ASN1 Gene Enhances Nitrogen Status in Seeds of Arabidopsis. Plant Physiology, 2003, 132, 926-935.	4.8	193
160	Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Molecular Biology and Evolution, 1999, 16, 826-838.	8.9	185
161	Glutamate-receptor genes in plants. Nature, 1998, 396, 125-126.	27.8	328
162	Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites inArabidopsis thaliana. Plant Journal, 1998, 16, 345-353.	5.7	217

#	Article	IF	CITATIONS
163	A PII-like protein in Arabidopsis: Putative role in nitrogen sensing. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13965-13970.	7.1	236
164	THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. Annual Review of Plant Biology, 1996, 47, 569-593.	14.3	750
165	Use of Arabidopsis Mutants and Genes to Study Amide Amino Acid Biosynthesis. Plant Cell, 1995, 7, 887.	6.6	1
166	Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis Plant Cell, 1995, 7, 887-898.	6.6	249
167	Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis thaliana. Plant Physiology, 1994, 106, 1347-1357.	4.8	228
168	Metabolic relationships between pyridoxine (vitamin B6) and serine biosynthesis in Escherichia coli K-12. Journal of Bacteriology, 1990, 172, 6518-6528.	2.2	100
169	Extensive homology between theEscherichia coliK-12 SerC(PdxF) aminotransferese and a protein encoded by a progesterone-induced mRNA in rabbit and human endometria. Nucleic Acids Research, 1989, 17, 8379-8379.	14.5	10
170	Physiological effects and uptake of cadmium in Pisum sativum. Environment International, 1988, 14, 535-543.	10.0	13
171	Drought Stress and Tolerance in Soybean. , 0, , .		35
172	Risk factors associated with bedbug (Cimex spp.) infestations among Hong Kong households: a cross-sectional study. Journal of Housing and the Built Environment, 0, , 1.	1.8	4
173	Molecular Responses to Osmotic Stresses in Soybean. , 0, , .		1
174	Crystal Structures of REF6 and Its Complex with DNA Reveal Diverse Recognition Mechanisms. SSRN Electronic Journal, 0, , .	0.4	0