
Robert Dominko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5589424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€Healing: An Emerging Technology for Nextâ€Generation Smart Batteries. Advanced Energy Materials, 2022, 12, 2102652.	10.2	47
2	The Pitfalls and Opportunities of Impedance Spectroscopy of Lithium Sulfur Batteries. Advanced Materials Interfaces, 2022, 9, 2101116.	1.9	13
3	Implications of the BATTERY 2030+ Alâ€Assisted Toolkit on Future Lowâ€TRL Battery Discoveries and Chemistries. Advanced Energy Materials, 2022, 12, 2102698.	10.2	20
4	A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+. Advanced Energy Materials, 2022, 12, .	10.2	70
5	Transmission Line Model Impedance Analysis of Lithium Sulfur Batteries: Influence of Lithium Sulfide Deposit Formed During Discharge and Self-Discharge. Journal of the Electrochemical Society, 2022, 169, 010529.	1.3	4
6	Extending the Conversion Rate of Sulfur Infiltrated into Microporous Carbon in Carbonate Electrolytes. Batteries and Supercaps, 2022, 5, .	2.4	3
7	Rechargeable Batteries of the Future—The State of the Art from a BATTERY 2030+ Perspective. Advanced Energy Materials, 2022, 12, .	10.2	124
8	Characterization of Electrochemical Processes in Metal–Organic Batteries by X-ray Raman Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 5435-5442.	1.5	4
9	Alloying electrode coatings towards better magnesium batteries. Journal of Materials Chemistry A, 2022, 10, 12104-12113.	5.2	14
10	Fluorinated solvents for better batteries. Nature Reviews Chemistry, 2022, 6, 449-450.	13.8	16
11	Editorial to the Special Issue: How to Reinvent the Ways to Invent the Batteries of the Future – the Battery 2030+ Large‣cale Research Initiative Roadmap. Advanced Energy Materials, 2022, 12, .	10.2	6
12	On the Practical Applications of the Magnesium Fluorinated Alkoxyaluminate Electrolyte in Mg Battery Cells. ACS Applied Materials & Interfaces, 2022, 14, 26766-26774.	4.0	19
13	High frequency response of adenine-derived carbon in aqueous electrochemical capacitor. Electrochimica Acta, 2022, 424, 140649.	2.6	1
14	Nanostructured Poly(hydroquinonyl-benzoquinonyl sulfide)/Multiwalled Carbon Nanotube Composite Cathodes: Improved Synthesis and Performance for Rechargeable Li and Mg Organic Batteries. Chemistry of Materials, 2022, 34, 6378-6388.	3.2	3
15	A New Cell Configuration for a More Precise Electrochemical Evaluation of an Artificial Solidâ€Electrolyte Interphase. Batteries and Supercaps, 2021, 4, 623-631.	2.4	1
16	Electrochemical Performance and Mechanism of Calcium Metalâ€Organic Battery. Batteries and Supercaps, 2021, 4, 214-220.	2.4	44
17	Sulfur valence-to-core X-ray emission spectroscopy study of lithium sulfur batteries. Chemical Communications, 2021, 57, 7573-7576.	2.2	7
18	Characterization of Li–S Batteries Using Laboratory Sulfur X-ray Emission Spectroscopy. ACS Applied Energy Materials, 2021, 4, 2357-2364.	2.5	8

#	Article	IF	CITATIONS
19	Building <i>Ab Initio</i> Interface Pourbaix diagrams to Investigate Electrolyte Stability in the Electrochemical Double Layer: Application to Magnesium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 8263-8273.	4.0	25
20	Magnesium Polysulfides: Synthesis, Disproportionation, and Impedance Response in Symmetrical Carbon Electrode Cells. ChemElectroChem, 2021, 8, 1062-1069.	1.7	7
21	Electrochemical Performance of Mg Metalâ€Quinone Battery in Chlorideâ€Free Electrolyte. Batteries and Supercaps, 2021, 4, 815-822.	2.4	9
22	Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook. Energy Storage Materials, 2021, 37, 243-273.	9.5	41
23	Magnesium Insertion and Related Structural Changes in Spinel-Type Manganese Oxides. Crystals, 2021, 11, 984.	1.0	1
24	Data Management Plans: the Importance of Data Management in the BIGâ€MAP Project**. Batteries and Supercaps, 2021, 4, 1803-1812.	2.4	19
25	Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone. Energy Material Advances, 2021, 2021, .	4.7	21
26	Lithium sulfur batteries: Electrochemistry and mechanistic research. , 2021, , .		0
27	Concept and electrochemical mechanism of an Al metal anode ‒ organic cathode battery. Energy Storage Materials, 2020, 24, 379-383.	9.5	138
28	Role of Cu current collector on electrochemical mechanism of Mg–S battery. Journal of Power Sources, 2020, 450, 227672.	4.0	21
29	Effects of a Mixed O/F Ligand in the Tavorite-Type LiVPO ₄ O Structure. Chemistry of Materials, 2020, 32, 262-272.	3.2	3
30	Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries. ACS Energy Letters, 2020, 5, 152-161.	8.8	53
31	Polysulfide species in various electrolytes of Li-S batteries – a chromatographic investigation. Electrochimica Acta, 2020, 363, 137227.	2.6	23
32	Magnesium batteries: Current picture and missing pieces of the puzzle. Journal of Power Sources, 2020, 478, 229027.	4.0	70
33	Advances in understanding Li battery mechanisms using impedance spectroscopy - Review. Journal of Electrochemical Science and Engineering, 2020, 10, 79-93.	1.6	11
34	Spectroscopic Insights into the Electrochemical Mechanism of Rechargeable Calcium/Sulfur Batteries. Chemistry of Materials, 2020, 32, 8266-8275.	3.2	29
35	Aluminum Metal–Organic Batteries with Integrated 3D Thin Film Anodes. Advanced Functional Materials, 2020, 30, 2004573.	7.8	30
36	Electrochemical Kinetics Study of Interaction Between Li Metal and Polysulfides. Journal of the Electrochemical Society, 2020, 167, 080526.	1.3	8

#	Article	IF	CITATIONS
37	Ceramic synthesis of disordered lithium rich oxyfluoride materials. Journal of Power Sources, 2020, 467, 228230.	4.0	7
38	Effect of high concentration of polysulfides on Li stripping and deposition. Electrochimica Acta, 2020, 354, 136696.	2.6	15
39	Electrolyte Reactivity in the Double Layer in Mg Batteries: An Interface Potential-Dependent DFT Study. Journal of the American Chemical Society, 2020, 142, 5146-5153.	6.6	71
40	Lithium Metal Protection by a Cross-Linked Polymer Ionic Liquid and Its Application in Lithium Battery. ACS Applied Energy Materials, 2020, 3, 2020-2027.	2.5	37
41	A Powerful Transmission Line Model for Analysis of Impedance of Insertion Battery Cells: A Case Study on the NMC-Li System. Journal of the Electrochemical Society, 2020, 167, 140539.	1.3	38
42	Transmission Line Model of Battery Cell's Impedance: Theory Vs. Experiments. ECS Meeting Abstracts, 2020, MA2020-02, 186-186.	0.0	0
43	Which Process Limits the Operation of a Li–S System?. Chemistry of Materials, 2019, 31, 9012-9023.	3.2	56
44	Morphology evolution of magnesium facets: DFT and KMC simulations. Physical Chemistry Chemical Physics, 2019, 21, 2434-2442.	1.3	20
45	Tracking electrochemical reactions inside organic electrodes by operando IR spectroscopy. Energy Storage Materials, 2019, 21, 347-353.	9.5	32
46	Effect of salts on the electrochemical performance of Mg metal‒organic battery. Journal of Power Sources, 2019, 430, 90-94.	4.0	40
47	Ionic Liquids and their Polymers in Lithiumâ€Sulfur Batteries. Israel Journal of Chemistry, 2019, 59, 832-842.	1.0	15
48	Impedance response of porous carbon cathodes in polysulfide redox system. Electrochimica Acta, 2019, 302, 169-179.	2.6	39
49	The Role of Cellulose Based Separator in Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5237-A5243.	1.3	27
50	Ceramic Synthesis of Disordered Lithium Rich Oxyfluoride and the Impact of Their Defects in Electrochemical Performances. ECS Meeting Abstracts, 2019, , .	0.0	1
51	Redox Mechanisms and Film Formation at Interfaces in Lithium-sulfur Battery System. ECS Meeting Abstracts, 2019, , .	0.0	0
52	(Keynote) Important and Less Important Challenges of Metal Sulfur Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
53	How Do Li-S Electrolytes with Reduced Polysulfide Solubility Work – an Impedance Spectroscopy Investigation. ECS Meeting Abstracts, 2019, , .	0.0	0
54	Fluorination of Vanadium Oxy-Phosphate By Lif: Electrochemical Behavior in Li-Ion Battery. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
55	(Invited) Magnesium Organic Batteries. ECS Meeting Abstracts, 2019, , .	0.0	Ο
56	Modelling the Electrode/Electrolyte Interfaces. ECS Meeting Abstracts, 2019, , .	0.0	0
57	Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries. Scientific Reports, 2018, 8, 5819.	1.6	51
58	Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nature Communications, 2018, 9, 661.	5.8	100
59	Polysulfides Formation in Different Electrolytes from the Perspective of X-ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2018, 165, A5014-A5019.	1.3	37
60	Electrochemical behavior of Bi ₄ B ₂ O ₉ towards lithium-reversible conversion reactions without nanosizing. Physical Chemistry Chemical Physics, 2018, 20, 2330-2338.	1.3	9
61	Opportunities and Challenges in the Development of Cathode Materials for Rechargeable Mg Batteries. Frontiers in Chemistry, 2018, 6, 634.	1.8	19
62	Impact of Structural Polymorphism on Ionic Conductivity in Lithium Copper Pyroborate Li ₆ CuB ₄ O ₁₀ . Inorganic Chemistry, 2018, 57, 11646-11654.	1.9	5
63	Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery. Journal of Power Sources, 2018, 395, 25-30.	4.0	76
64	Linear and Cross-Linked Ionic Liquid Polymers as Binders in Lithium–Sulfur Batteries. Chemistry of Materials, 2018, 30, 5444-5450.	3.2	53
65	Insight into Mg-S Battery Mechanism. ECS Meeting Abstracts, 2018, , .	0.0	Ο
66	The mechanism of Li2S activation in lithium-sulfur batteries: Can we avoid the polysulfide formation?. Journal of Power Sources, 2017, 344, 208-217.	4.0	82
67	Effect of Clâ^' and TFSlâ^' anions on dual electrolyte systems in a hybrid Mg/Li4Ti5O12 battery. Electrochemistry Communications, 2017, 76, 29-33.	2.3	17
68	<i>Operando</i> characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron Elettra. Journal Physics D: Applied Physics, 2017, 50, 074001.	1.3	85
69	Analytical Techniques for Lithium–Sulfur Batteries. , 2017, , 275-307.		Ο
70	Mechanistic Study of Magnesium–Sulfur Batteries. Chemistry of Materials, 2017, 29, 9555-9564.	3.2	101
71	The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium–sulfur batteries. Electrochimica Acta, 2017, 252, 147-153.	2.6	26
72	Pulse combustion reactor as a fast and scalable synthetic method for preparation of Li-ion cathode materials. Journal of Power Sources, 2017, 363, 218-226.	4.0	10

#	Article	IF	CITATIONS
73	Reactivity and Diffusivity of Li Polysulfides: A Fundamental Study Using Impedance Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 29760-29770.	4.0	61
74	Fluorinated Ether Based Electrolyte for High-Energy Lithium–Sulfur Batteries: Li ⁺ Solvation Role Behind Reduced Polysulfide Solubility. Chemistry of Materials, 2017, 29, 10037-10044.	3.2	75
75	Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li ₆ CuB ₄ O ₁₀ . Physical Chemistry Chemical Physics, 2016, 18, 14960-14969.	1.3	14
76	Poly(hydroquinoyl-benzoquinonyl sulfide) as an active material in Mg and Li organic batteries. Electrochemistry Communications, 2016, 69, 1-5.	2.3	54
77	Application of Gel Polymer Electrolytes Based on Ionic Liquids in Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2016, 163, A2390-A2398.	1.3	31
78	Synthesis, Structure, and Electrochemical Properties of Na3MB5O10 (M = Fe, Co) Containing M2+ in Tetrahedral Coordination. Inorganic Chemistry, 2016, 55, 12775-12782.	1.9	18
79	Stable Crystalline Forms of Na Polysulfides: Experiment versus Ab Initio Computational Prediction. Chemistry - A European Journal, 2016, 22, 3355-3360.	1.7	13
80	Quinone-formaldehyde polymer as an active material in Li-ion batteries. Journal of Power Sources, 2016, 315, 169-178.	4.0	43
81	The use of methylcellulose for the synthesis of Li2FeSiO4/C composites. Cellulose, 2016, 23, 239-246.	2.4	3
82	Sulphured Polyacrylonitrile Composite Analysed by in operando UV-Visible Spectroscopy and 4-electrode Swagelok Cell. Acta Chimica Slovenica, 2016, 63, 569-577.	0.2	2
83	Biomassâ€Đerived Heteroatomâ€Doped Carbon Aerogels from a Salt Melt Sol–Gel Synthesis and their Performance in Li–S Batteries. ChemSusChem, 2015, 8, 3077-3083.	3.6	72
84	Anthraquinoneâ€Based Polymer as Cathode in Rechargeable Magnesium Batteries. ChemSusChem, 2015, 8, 4128-4132.	3.6	137
85	Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science, 2015, 350, 1516-1521.	6.0	659
86	Novel Complex Stacking of Fully-Ordered Transition Metal Layers in Li ₄ FeSbO ₆ Materials. Chemistry of Materials, 2015, 27, 1699-1708.	3.2	40
87	In situ Fe K-edge X-ray absorption spectroscopy study during cycling of Li ₂ FeSiO ₄ and Li _{2.2} Fe _{0.9} SiO ₄ Li ion battery materials. Journal of Materials Chemistry A, 2015, 3, 7314-7322.	5.2	23
88	Analytical Detection of Polysulfides in the Presence of Adsorption Additives by Operando X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 19001-19010.	1.5	64
89	Singular Structural and Electrochemical Properties in Highly Defective LiFePO ₄ Powders. Chemistry of Materials, 2015, 27, 4261-4273.	3.2	43
90	Understanding the Roles of Anionic Redox and Oxygen Release during Electrochemical Cycling of Lithium-Rich Layered Li ₄ FeSbO ₆ . Journal of the American Chemical Society, 2015, 137, 4804-4814.	6.6	155

#	Article	IF	CITATIONS
91	Fluorinated Reduced Graphene Oxide as an Interlayer in Li–S Batteries. Chemistry of Materials, 2015, 27, 7070-7081.	3.2	124
92	Manganese modified zeolite silicalite-1 as polysulphide sorbent in lithium sulphur batteries. Journal of Power Sources, 2015, 274, 1239-1248.	4.0	35
93	Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using Laser assisted Chemical Vapour Pyrolysis. Journal of Power Sources, 2015, 273, 380-388.	4.0	5
94	Back Cover: Effective Separation of Lithium Anode and Sulfur Cathode in Lithium-Sulfur Batteries (ChemElectroChem 6/2014). ChemElectroChem, 2014, 1, 1086-1086.	1.7	0
95	Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries. Journal of Power Sources, 2014, 254, 55-61.	4.0	44
96	Xâ€ray Absorption Nearâ€Edge Structure and Nuclear Magnetic Resonance Study of the Lithium–Sulfur Battery and its Components. ChemPhysChem, 2014, 15, 894-904.	1.0	113
97	Polymorphism in Li ₂ <i>M</i> SiO ₄ (<i>M</i> = Fe, Mn): A Variable Temperature Diffraction Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1043-1049.	0.6	14
98	Effective Separation of Lithium Anode and Sulfur Cathode in Lithium–Sulfur Batteries. ChemElectroChem, 2014, 1, 1040-1045.	1.7	64
99	Application of In Operando UV/Vis Spectroscopy in Lithium–Sulfur Batteries. ChemSusChem, 2014, 7, 2167-2175.	3.6	115
100	Redoxâ€Active Functionalized Graphene Nanoribbons as Electrode Material for Liâ€lon Batteries. ChemElectroChem, 2014, 1, 2131-2137.	1.7	14
101	Structural study of monoclinic Li2FeSiO4 by X-ray diffraction and Mössbauer spectroscopy. Journal of Power Sources, 2014, 265, 75-80.	4.0	10
102	1,2,4,5-Tetramethoxybenzene as a redox shuttle and their analogues in Li-ion batteries. Journal of Power Sources, 2013, 235, 214-219.	4.0	12
103	Liâ€5 Battery Analyzed by UV/Vis in Operando Mode. ChemSusChem, 2013, 6, 1177-1181.	3.6	243
104	Nonstochiometry in LiFe _{0.5} Mn _{0.5} PO ₄ : Structural and Electrochemical Society, 2013, 160, A1446-A1450.	1.3	19
105	Synthesis of Nanometric LiMnPO ₄ via a Two-Step Technique. Chemistry of Materials, 2012, 24, 1041-1047.	3.2	91
106	A3V2(PO4)3 (AÂ=ÂNa or Li) probed by in situ X-ray absorption spectroscopy. Journal of Power Sources, 2012, 216, 145-151.	4.0	60
107	Local Coordination and Valence States of Cobalt in Sodium Titanate Nanoribbons. Journal of Physical Chemistry C, 2012, 116, 11357-11363.	1.5	12
108	Electrochemically stabilised quinone based electrode composites for Li-ion batteries. Journal of Power Sources, 2012, 199, 308-314.	4.0	67

#	Article	IF	CITATIONS
109	Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. Journal of Power Sources, 2012, 205, 402-407.	4.0	66
110	Understanding 6Li MAS NMR spectra of Li2MSiO4 materials (M=Mn, Fe, Zn). Solid State Nuclear Magnetic Resonance, 2012, 42, 33-41.	1.5	20
111	Cathode Composites for Li–S Batteries via the Use of Oxygenated Porous Architectures. Journal of the American Chemical Society, 2011, 133, 16154-16160.	6.6	568
112	Polymorphism in Li2(Fe,Mn)SiO4: A combined diffraction and NMR study. Journal of Materials Chemistry, 2011, 21, 17823.	6.7	55
113	Li ₂ FeSiO ₄ Polymorphs Probed by ⁶ Li MAS NMR and ⁵⁷ Fe MA¶ssbauer Spectroscopy. Chemistry of Materials, 2011, 23, 2735-2744.	3.2	65
114	Silicate cathodes for lithium batteries: alternatives to phosphates?. Journal of Materials Chemistry, 2011, 21, 9811.	6.7	310
115	Dependence of Li ₂ FeSiO ₄ Electrochemistry on Structure. Journal of the American Chemical Society, 2011, 133, 1263-1265.	6.6	204
116	Electrochemical characteristics of Li2â^'xVTiO4 rock salt phase in Li-ion batteries. Journal of Power Sources, 2011, 196, 6856-6862.	4.0	34
117	Optical properties of exfoliated MoS2 coaxial nanotubes - analogues of graphene. Nanoscale Research Letters, 2011, 6, 593.	3.1	83
118	Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochemistry Communications, 2011, 13, 117-120.	2.3	89
119	Lithium bis(fluorosulfonyl)imide–PYR14TFSI ionic liquid electrolyte compatible with graphite. Journal of Power Sources, 2011, 196, 7700-7706.	4.0	119
120	Electroactive Organic Molecules Immobilized onto Solid Nanoparticles as a Cathode Material for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2010, 49, 7222-7224.	7.2	163
121	Crystal Structure of a New Polymorph of Li ₂ FeSiO ₄ . Inorganic Chemistry, 2010, 49, 7446-7451.	1.9	109
122	On the Origin of the Electrochemical Capacity of Li[sub 2]Fe[sub 0.8]Mn[sub 0.2]SiO[sub 4]. Journal of the Electrochemical Society, 2010, 157, A1309.	1.3	66
123	Silicates and titanates as high-energy cathode materials for Li-ion batteries. , 2010, , .		7
124	Polymorphism and structural defects in Li2FeSiO4. Dalton Transactions, 2010, 39, 6310.	1.6	110
125	6Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. Chemical Communications, 2010, 46, 3306.	2.2	68
126	Electrochemical Behavior of Li[sub 2]FeSiO[sub 4] with Ionic Liquids at Elevated Temperature. Journal of the Electrochemical Society, 2009, 156, A619.	1.3	64

#	Article	IF	CITATIONS
127	Stabilizers of Particle Size and Morphology: a Road Towards Highâ€Rate Performance Insertion Materials. Advanced Materials, 2009, 21, 2715-2719.	11.1	63
128	Tailoring nanostructured TiO2 for high power Li-ion batteries. Journal of Power Sources, 2009, 189, 869-874.	4.0	23
129	Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes. Journal of Power Sources, 2009, 189, 133-138.	4.0	26
130	Electrochemical activity of Li2FeTiO4 and Li2MnTiO4 as potential active materials for Li ion batteries: A comparison with Li2NiTiO4. Journal of Power Sources, 2009, 189, 81-88.	4.0	50
131	Detailed In Situ Investigation of the Electrochemical Processes in Li[sub 2]FeTiO[sub 4] Cathodes. Journal of the Electrochemical Society, 2009, 156, A809.	1.3	31
132	Synthesis of 3D Hierarchical Self-Assembled Microstructures Formed from α-MnO ₂ Nanotubes and Their Conducting and Magnetic Properties. Journal of Physical Chemistry C, 2009, 113, 14798-14803.	1.5	67
133	Impact of synthesis conditions on the structure and performance of Li2FeSiO4. Journal of Power Sources, 2008, 178, 842-847.	4.0	154
134	Li2MSiO4 (M=Fe and/or Mn) cathode materials. Journal of Power Sources, 2008, 184, 462-468.	4.0	340
135	On the Energetic Stability and Electrochemistry of Li ₂ MnSiO ₄ Polymorphs. Chemistry of Materials, 2008, 20, 5574-5584.	3.2	178
136	The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc. Electrochemical and Solid-State Letters, 2008, 11, A170.	2.2	306
137	The Influence of the Reaction Temperature on the Morphology of Sodium Titanate 1D Nanostructures and Their Thermal Stability. Journal of Nanoscience and Nanotechnology, 2007, 7, 3502-3508.	0.9	47
138	Beyond One-Electron Reaction in Li Cathode Materials: Â Designing Li2MnxFe1-xSiO4. Chemistry of Materials, 2007, 19, 3633-3640.	3.2	245
139	Wired Porous Cathode Materials:Â A Novel Concept for Synthesis of LiFePO4. Chemistry of Materials, 2007, 19, 2960-2969.	3.2	200
140	Improved Electrode Performance of Porous LiFePO ₄ Using RuO ₂ as an Oxidic Nanoscale Interconnect. Advanced Materials, 2007, 19, 1963-1966.	11.1	380
141	Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochemistry Communications, 2007, 9, 2778-2783.	2.3	401
142	Li2MnSiO4 as a potential Li-battery cathode material. Journal of Power Sources, 2007, 174, 457-461.	4.0	186
143	The meaning of impedance measurements of LiFePO4 cathodes: A linearity study. Journal of Power Sources, 2007, 174, 944-948.	4.0	32
144	Morphology and electrical properties of conductive carbon coatings for cathode materials. Journal of Power Sources, 2007, 174, 683-688.	4.0	93

#	Article	IF	CITATIONS
145	Carbon nanocoatings on active materials for Li-ion batteries. Journal of the European Ceramic Society, 2007, 27, 909-913.	2.8	75
146	Alkali hexatitanates—A2Ti6O13 (A = Na, K) as host structure for reversible lithium insertion. Journal of Power Sources, 2007, 174, 1172-1176.	4.0	49
147	Synthesis, structure, and magnetic properties of iron-oxide nanowires. Journal of Materials Research, 2006, 21, 2955-2962.	1.2	18
148	Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Communications, 2006, 8, 217-222.	2.3	430
149	Porous olivine composites synthesized by sol–gel technique. Journal of Power Sources, 2006, 153, 274-280.	4.0	260
150	Mass and charge transport in hierarchically organized storage materials. Example: Porous active materials with nanocoated walls of pores. Solid State Ionics, 2006, 177, 3015-3022.	1.3	38
151	Porous, carbon-decorated LiFePO prepared by sol–gel method based on citric acid. Solid State Ionics, 2005, 176, 1801-1805.	1.3	99
152	Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO[sub 4]/C Composites. Journal of the Electrochemical Society, 2005, 152, A607.	1.3	445
153	Impact of LiFePO[sub 4]â^•C Composites Porosity on Their Electrochemical Performance. Journal of the Electrochemical Society, 2005, 152, A858.	1.3	126
154	A comparative study of magnetic properties of LiFePO4and LiMnPO4. Journal of Physics Condensed Matter, 2004, 16, 5531-5548.	0.7	44
155	Electrochemical preparation and characterisation of LizMoS2â~'x nanotubes. Electrochimica Acta, 2003, 48, 3079-3084.	2.6	27
156	Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochimica Acta, 2003, 48, 3709-3716.	2.6	149
157	Magnetic properties of MoS 2 nanotubes doped with lithium. Polyhedron, 2003, 22, 2293-2295.	1.0	13
158	The role of carbon black distribution in cathodes for Li ion batteries. Journal of Power Sources, 2003, 119-121, 770-773.	4.0	255
159	Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study. Electrochimica Acta, 2003, 48, 883-889.	2.6	152
160	Electron spin resonance of doped chalcogenide nanotubes. Physical Review B, 2003, 67, .	1.1	21
161	Temperature dependent ESR of doped chalcogenide nanotubes. AIP Conference Proceedings, 2003, , .	0.3	0
162	ESR Study of Electrochemically Doped Chalcogenide Nanotubes. Materials Research Society Symposia Proceedings, 2003, 775, 9261.	0.1	1

10

#	Article	IF	CITATIONS
163	Dichalcogenide Nanotube Electrodes for Li-Ion Batteries. Advanced Materials, 2002, 14, 1531-1534.	11.1	206
164	Gelatin-modified surfaces in selected electronic components. , 2001, , 177-179.		1
165	Carbon anodes prepared from graphite particles pretreated in a gelatine solution. Journal of Power Sources, 2001, 94, 97-101.	4.0	46
166	Improved carbon anode properties: pretreatment of particles in polyelectrolyte solution. Journal of Power Sources, 2001, 97-98, 67-69.	4.0	42
167	A Novel Coating Technology for Preparation of Cathodes in Li-Ion Batteries. Electrochemical and Solid-State Letters, 2001, 4, A187.	2.2	114