## Linda E Sohl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5589293/publications.pdf Version: 2024-02-01



| # | Article                                                                                                                                                      | IF  | CITATIONS |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1 | Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?. Geology, 2001, 29, 443. | 4.4 | 317       |

Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south) Tj ETQq0 0 0 rg $\frac{10}{292}$  10 Tf 50

| 3  | Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project.<br>Climate of the Past, 2013, 9, 191-209.                                                                                                         | 3.4  | 289 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 4  | Paleomagnetism and Detrital Zircon Geochronology of the Upper Vindhyan Sequence, Son Valley and<br>Rajasthan, India: A ca. 1000Ma Closure age for the Purana Basins?. Precambrian Research, 2008, 164,<br>137-159.                                   | 2.7  | 237 |
| 5  | Was Venus the first habitable world of our solar system?. Geophysical Research Letters, 2016, 43,<br>8376-8383.                                                                                                                                      | 4.0  | 233 |
| 6  | Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: Implications<br>for the duration of low-latitude glaciation in Neoproterozoic time. Bulletin of the Geological<br>Society of America, 1999, 111, 1120-1139. | 3.3  | 190 |
| 7  | Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions<br>(Experiment 1). Geoscientific Model Development, 2010, 3, 227-242.                                                                                  | 3.6  | 168 |
| 8  | Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature<br>Climate Change, 2013, 3, 969-974.                                                                                                                   | 18.8 | 132 |
| 9  | Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports, 2013, 3, 2013.                                                                                                                                     | 3.3  | 124 |
| 10 | Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics<br>(ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets.<br>Astrophysical Journal, Supplement Series, 2017, 231, 12. | 7.7  | 106 |
| 11 | The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate of the Past, 2020, 16, 2095-2123.                                                                                                  | 3.4  | 93  |
| 12 | Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. Journal of Geophysical Research, 2000, 105, 20737-20756.                                                                         | 3.3  | 92  |
| 13 | Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Climate of the Past, 2013, 9, 2085-2099.                                                                                                                                           | 3.4  | 60  |
| 14 | Evaluating the dominant components of warming in Pliocene climate simulations. Climate of the Past, 2014, 10, 79-90.                                                                                                                                 | 3.4  | 58  |
| 15 | Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern. Climate of the Past, 2013, 9, 1495-1504.                                                                                                                                 | 3.4  | 50  |
| 16 | Considering a Neoproterozoic Snowball Earth. Science, 1999, 284, 1087a-1087.                                                                                                                                                                         | 12.6 | 36  |
| 17 | Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. Climate of the Past, 2015, 11, 403-424.                                                                                          | 3.4  | 35  |
| 18 | Simulations of the mid-Pliocene Warm Period using two versions of the NASA/GISS ModelE2-R Coupled Model. Geoscientific Model Development, 2013, 6, 517-531.                                                                                          | 3.6  | 34  |

Linda E Sohl

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report. Planetary Science Journal, 2021, 2, 106.                                                                                                                 | 3.6 | 29        |
| 20 | Impact of a permanent El Niño (El Padre) and Indian Ocean Dipole in warm Pliocene climates.<br>Paleoceanography, 2009, 24, .                                                                                                   | 3.0 | 26        |
| 21 | Climate-Ice Sheet Simulations of Neoproterozoic Glaciation Before and After Collapse to Snowball Earth. Geophysical Monograph Series, 0, , 91-105.                                                                             | 0.1 | 21        |
| 22 | Evaluation of Arctic warming in mid-Pliocene climate simulations. Climate of the Past, 2020, 16, 2325-2341.                                                                                                                    | 3.4 | 21        |
| 23 | Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison<br>Project Phase 2 (PlioMIP2) ensemble. Climate of the Past, 2021, 17, 2537-2558.                                             | 3.4 | 21        |
| 24 | Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Climate of the Past, 2021, 17, 529-543.                                                                                                        | 3.4 | 20        |
| 25 | Neoproterozoic Glaciations and the Fossil Record. Geophysical Monograph Series, 0, , 199-214.                                                                                                                                  | 0.1 | 19        |
| 26 | Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. Astrophysical<br>Journal, 2019, 884, 75.                                                                                                     | 4.5 | 18        |
| 27 | Geochemical Climate Proxies Applied to the Neoproterozoic Glacial Succession on the Yangtze Platform, South China. Geophysical Monograph Series, 0, , 13-32.                                                                   | 0.1 | 14        |
| 28 | Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 1777-1794.                                                                                                    | 3.4 | 10        |
| 29 | Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 2427-2450.                                                                                                  | 3.4 | 10        |
| 30 | Teleconnections in a warmer climate: the pliocene perspective. Climate Dynamics, 2011, 37, 1869-1887.                                                                                                                          | 3.8 | 8         |
| 31 | Neoproterozoic Glaciation: Reconciling Low Paleolatitudes and the Geologic Record. Geophysical Monograph Series, 0, , 145-159.                                                                                                 | 0.1 | 8         |
| 32 | Earth's Earliest Extensive Glaciations: Tectonic Setting and Stratigraphic Context of Paleoproterozoic Glaciogenic Deposits. Geophysical Monograph Series, 0, , 161-181.                                                       | 0.1 | 8         |
| 33 | Formerly-Aragonite Seafloor Fans from Neoproterozoic Strata, Death Valley and Southeastern Idaho,<br>United States: Implications for "Cap Carbonate―Formation and Snowball Earth. Geophysical<br>Monograph Series, 0, , 33-44. | 0.1 | 7         |
| 34 | Climate, Paleoecology and Abrupt Change During the Late Proterozoic: A Consideration of Causes and Effects. Geophysical Monograph Series, 0, , 215-229.                                                                        | 0.1 | 6         |
| 35 | Secular Changes in the Importance of Neritic Carbonate Deposition as a Control on the Magnitude and Stability of Neoproterozoic Ice Ages. Geophysical Monograph Series, 2013, , 55-72.                                         | 0.1 | 5         |
| 36 | Interpreting the Neoproterozoic Glacial Record: The Importance of Tectonics. Geophysical Monograph<br>Series, 2013, , 125-144.                                                                                                 | 0.1 | 5         |

Linda E Sohl

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Global Tectonic Setting and Climate of the Late Neoproterozoic: A Climate-Geochemical Coupled<br>Study. Geophysical Monograph Series, 0, , 79-89.    | 0.1 | 5         |
| 38 | Teaching anthropogenic global climate change (AGCC) using climate models. Journal of Geography in<br>Higher Education, 2019, 43, 527-543.            | 2.6 | 5         |
| 39 | Reconstructing Neoproterozoic palaeoclimates using a combined data/modelling approach. , 0, , 61-80.                                                 |     | 5         |
| 40 | A Review of Neoproterozoic Climate Modeling Studies. Geophysical Monograph Series, 0, , 73-78.                                                       | 0.1 | 1         |
| 41 | High Obliquity as an Alternative Hypothesis to Early and Late Proterozoic Extreme Climate Conditions.<br>Geophysical Monograph Series, 0, , 183-192. | 0.1 | 1         |
| 42 | Introduction: The Proterozoic. Geophysical Monograph Series, 2013, , 1-4.                                                                            | 0.1 | 0         |