## Andreas Spiegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5589224/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Brain simulation augments machineâ€learning–based classification of dementia. Alzheimer's and<br>Dementia: Translational Research and Clinical Interventions, 2022, 8, .                                           | 3.7 | 10        |
| 2  | In silico exploration of mouse brain dynamics by focal stimulation reflects the organization of functional networks and sensory processing. Network Neuroscience, 2020, 4, 807-851.                                | 2.6 | 8         |
| 3  | Linking Molecular Pathways and Large-Scale Computational Modeling to Assess Candidate Disease<br>Mechanisms and Pharmacodynamics in Alzheimer's Disease. Frontiers in Computational Neuroscience,<br>2019, 13, 54. | 2.1 | 83        |
| 4  | Ebbinghaus figures that deceive the eye do not necessarily deceive the hand. Scientific Reports, 2017, 7, 3111.                                                                                                    | 3.3 | 12        |
| 5  | Fast–Slow Bursters in the Unfolding of a High Codimension Singularity and the Ultra-slow<br>Transitions of Classes. Journal of Mathematical Neuroscience, 2017, 7, 7.                                              | 2.4 | 60        |
| 6  | How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?. NeuroImage, 2016, 142, 135-149.                                                                        | 4.2 | 103       |
| 7  | Heterogeneity of time delays determines synchronization of coupled oscillators. Physical Review E, 2016, 94, 012209.                                                                                               | 2.1 | 49        |
| 8  | Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study. NeuroImage, 2016, 140, 174-187.                                                 | 4.2 | 132       |
| 9  | Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain. ENeuro, 2016, 3, ENEURO.0068-16.2016.                                           | 1.9 | 80        |
| 10 | Large-scale brain dynamics: effect of connectivity resolution. BMC Neuroscience, 2015, 16, .                                                                                                                       | 1.9 | 0         |
| 11 | Investigating the effect of electrical brain stimulation using a connectome-based brain network model. BMC Neuroscience, 2015, 16, .                                                                               | 1.9 | Ο         |
| 12 | Effects of multimodal distribution of delays in brain network dynamics. BMC Neuroscience, 2015, 16, .                                                                                                              | 1.9 | 4         |
| 13 | Mathematical framework for large-scale brain network modeling in The Virtual Brain. NeuroImage, 2015, 111, 385-430.                                                                                                | 4.2 | 274       |
| 14 | Functional connectivity dynamics: Modeling the switching behavior of the resting state. NeuroImage, 2015, 105, 525-535.                                                                                            | 4.2 | 463       |
| 15 | Bottom up modeling of the connectome: Linking structure and function in the resting brain and their changes in aging. Neurolmage, 2013, 80, 318-329.                                                               | 4.2 | 81        |
| 16 | Systematic approximations of neural fields through networks of neural masses in the virtual brain.<br>NeuroImage, 2013, 83, 704-725.                                                                               | 4.2 | 59        |
| 17 | TheVirtualBrain. Scholarpedia Journal, 2013, 8, 30912.                                                                                                                                                             | 0.3 | 1         |
| 18 | A neural field model using advanced anatomical connectivity information. BMC Neuroscience, 2011, 12,                                                                                                               | 1.9 | 0         |

ANDREAS SPIEGLER

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Complex behavior in a modified Jansen and Rit neural mass model. BMC Neuroscience, 2011, 12, .                                                                      | 1.9 | 0         |
| 20 | Modeling Brain Resonance Phenomena Using a Neural Mass Model. PLoS Computational Biology, 2011, 7,<br>e1002298.                                                     | 3.2 | 106       |
| 21 | Periodically forced neural mass model: entrainment and complex behavior. BMC Neuroscience, 2010, 11,                                                                | 1.9 | 0         |
| 22 | Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants.<br>NeuroImage, 2010, 52, 1041-1058.                            | 4.2 | 125       |
| 23 | Neural mass models for mimicking brain signals $\hat{a} \in$ impact of extrinsic inputs on interneurons and dendritic time constants. BMC Neuroscience, 2009, 10, . | 1.9 | 1         |
| 24 | A neural field model for spatio-temporal brain activity using a morphological model of cortical connectivity. BMC Neuroscience, 2009, 10, .                         | 1.9 | 0         |
| 25 | Phase coupling between different motor areas during tongue-movement imagery. Neuroscience<br>Letters, 2004, 369, 50-54.                                             | 2.1 | 33        |