Santiago Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of lung exposure to anti-tubercular drugs using plasma pharmacokinetic data: Implications for dose selection. European Journal of Pharmaceutical Sciences, 2022, 173, 106163.	1.9	2
2	A novel class of fastâ€acting antimalarial agents: Substituted 15â€membered azalides. British Journal of Pharmacology, 2021, 178, 363-377.	2.7	5
3	Pharmacokinetic / pharmacodynamic relationships of liposomal amphotericin B and miltefosine in experimental visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2021, 15, e0009013.	1.3	4
4	Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones. Journal of Computer-Aided Molecular Design, 2020, 34, 1117-1132.	1.3	6
5	Lead Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series for the Treatment of Malaria. Journal of Medicinal Chemistry, 2020, 63, 4929-4956.	2.9	23
6	Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2019, 62, 1180-1202.	2.9	33
7	ldentification of Fast-Acting 2,6-Disubstituted Imidazopyridines That Are Efficacious in the in Vivo Humanized <i>Plasmodium falciparum</i> NODscidIL2Rγ ^{<i>null</i>} Mouse Model of Malaria. Journal of Medicinal Chemistry, 2018, 61, 4213-4227.	2.9	19
8	Synthesis and Structure–Activity Relationships of the Novel Antimalarials 5-Pyridinyl-4(1 <i>H</i>)-Pyridones. Journal of Medicinal Chemistry, 2018, 61, 3422-3435.	2.9	15
9	A human microdose study of the antimalarial drug GSK3191607 in healthy volunteers. British Journal of Clinical Pharmacology, 2018, 84, 482-489.	1.1	9
10	Synthesis and profiling of benzylmorpholine 1,2,4,5-tetraoxane analogue N205: Towards tetraoxane scaffolds with potential for single dose cure of malaria. Bioorganic and Medicinal Chemistry, 2018, 26, 2996-3005.	1.4	11
11	The multistate tuberculosis pharmacometric model: a semi-mechanistic pharmacokinetic-pharmacodynamic model for studying drug effects in an acute tuberculosis mouse model. Journal of Pharmacokinetics and Pharmacodynamics, 2017, 44, 133-141.	0.8	21
12	Antimalarial efficacy of MMV390048, an inhibitor of <i>Plasmodium</i> phosphatidylinositol 4-kinase. Science Translational Medicine, 2017, 9, .	5.8	204
13	A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nature Communications, 2017, 8, 15159.	5.8	51
14	A potent series targeting the malarial cGMP-dependent protein kinase clears infection and blocks transmission. Nature Communications, 2017, 8, 430.	5.8	110
15	The Discovery of Novel Antimalarial Aminoxadiazoles as a Promising Nonendoperoxide Scaffold. Journal of Medicinal Chemistry, 2017, 60, 6880-6896.	2.9	11
16	Characterization of Novel Antimalarial Compound ACT-451840: Preclinical Assessment of Activity and Dose–Efficacy Modeling. PLoS Medicine, 2016, 13, e1002138.	3.9	35
17	Linking Murine and Human Plasmodium falciparum Challenge Models in a Translational Path for Antimalarial Drug Development. Antimicrobial Agents and Chemotherapy, 2016, 60, 3669-3675. -	1.4	40
18	Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor. EBioMedicine, 2016, 8, 291-301.	2.7	60

SANTIAGO FERRER

#	Article	IF	CITATIONS
19	Tetrahydro-2-naphthyl and 2-Indanyl Triazolopyrimidines Targeting <i>Plasmodium falciparum</i> Dihydroorotate Dehydrogenase Display Potent and Selective Antimalarial Activity. Journal of Medicinal Chemistry, 2016, 59, 5416-5431.	2.9	50
20	Population pharmacokinetics, optimised design and sample size determination for rifampicin, isoniazid, ethambutol and pyrazinamide in the mouse. European Journal of Pharmaceutical Sciences, 2016, 93, 319-333.	1.9	9
21	A Triazolopyrimidine-Based Dihydroorotate Dehydrogenase Inhibitor with Improved Drug-like Properties for Treatment and Prevention of Malaria. ACS Infectious Diseases, 2016, 2, 945-957.	1.8	71
22	Repurposing clinically approved cephalosporins for tuberculosis therapy. Scientific Reports, 2016, 6, 34293.	1.6	66
23	Identification of a Potential Antimalarial Drug Candidate from a Series of 2-Aminopyrazines by Optimization of Aqueous Solubility and Potency across the Parasite Life Cycle. Journal of Medicinal Chemistry, 2016, 59, 9890-9905.	2.9	51
24	Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials. Journal of Medicinal Chemistry, 2016, 59, 6101-6120.	2.9	13
25	Pharmacokinetic-Pharmacodynamic and Dose-Response Relationships of Antituberculosis Drugs: Recommendations and Standards for Industry and Academia. Journal of Infectious Diseases, 2015, 211, S96-S106.	1.9	93
26	Histone Methyltransferase Inhibitors Are Orally Bioavailable, Fast-Acting Molecules with Activity against Different Species Causing Malaria in Humans. Antimicrobial Agents and Chemotherapy, 2015, 59, 950-959.	1.4	43
27	A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522, 315-320.	13.7	353
28	A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Science Translational Medicine, 2015, 7, 296ra111.	5.8	254
29	A Novel Pyrazolopyridine with in Vivo Activity in <i>Plasmodium berghei</i> and <i>Plasmodium falciparum-</i> Infected Mouse Models from Structure–Activity Relationship Studies around the Core of Recently Identified Antimalarial Imidazopyridazines. Journal of Medicinal Chemistry, 2015, 58, 8713-8722.	2.9	32
30	Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum. Nature Communications, 2014, 5, 5521.	5.8	108
31	(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of <i>Plasmodium</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5455-62.	3.3	199
32	<i>N</i> -Aryl-2-aminobenzimidazoles: Novel, Efficacious, Antimalarial Lead Compounds. Journal of Medicinal Chemistry, 2014, 57, 6642-6652.	2.9	37
33	Repositioning: the fast track to new anti-malarial medicines?. Malaria Journal, 2014, 13, 143.	0.8	36
34	Case Study of Small Molecules As Antimalarials: 2-Amino-1-phenylethanol (APE) Derivatives. ACS Medicinal Chemistry Letters, 2014, 5, 657-661.	1.3	10
35	Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents. Journal of Medicinal Chemistry, 2014, 57, 5702-5713.	2.9	24
36	Humanised models of infection in the evaluation of anti-malarial drugs. Drug Discovery Today: Technologies, 2013, 10, e351-e357.	4.0	6

SANTIAGO FERRER

#	Article	IF	CITATIONS
37	Quinolone-3-Diarylethers: A New Class of Antimalarial Drug. Science Translational Medicine, 2013, 5, 177ra37.	5.8	187
38	A New In Vivo Screening Paradigm to Accelerate Antimalarial Drug Discovery. PLoS ONE, 2013, 8, e66967.	1.1	26
39	Exploration of 4(<i>1H</i>)-pyridones as a novel family of potent antimalarial inhibitors of the plasmodial cytochrome bc1. Future Medicinal Chemistry, 2012, 4, 2311-2323.	1.1	56
40	Novel hybrid molecules based on 15-membered azalide as potential antimalarial agents. European Journal of Medicinal Chemistry, 2012, 49, 365-378.	2.6	41
41	Cyclopropyl Carboxamides, a Chemically Novel Class of Antimalarial Agents Identified in a Phenotypic Screen. Antimicrobial Agents and Chemotherapy, 2011, 55, 5740-5745.	1.4	30
42	Potent antimalarial 4-pyridones with improved physico-chemical properties. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5214-5218.	1.0	36
43	Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent <i>Plasmodium falciparum</i> Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential. Journal of Medicinal Chemistry, 2011, 54, 5540-5561.	2.9	255
44	4‣ubstituted Thioquinolines and Thiazoloquinolines: Potent, Selective, and Tweenâ€80 inâ€vitro Dependent Families of Antitubercular Agents with Moderate inâ€vivo Activity. ChemMedChem, 2011, 6, 2252-2263.	1.6	17
45	Aminoindoles, a Novel Scaffold with Potent Activity against Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2011, 55, 2612-2622.	1.4	29
46	Chemical genetics of Plasmodium falciparum. Nature, 2010, 465, 311-315.	13.7	515
47	Falcipain Inhibitors: Optimization Studies of the 2-Pyrimidinecarbonitrile Lead Series. Journal of Medicinal Chemistry, 2010, 53, 6129-6152.	2.9	102
48	A Murine Model of falciparum-Malaria by In Vivo Selection of Competent Strains in Non-Myelodepleted Mice Engrafted with Human Erythrocytes. PLoS ONE, 2008, 3, e2252.	1.1	139
49	Preclinical Drug Metabolism and Pharmacokinetic Evaluation of GW844520, A Novel Anti-Malarial Mitochondrial Electron Transport Inhibitor. Journal of Pharmaceutical Sciences, 2006, 95, 2657-2672.	1.6	49
50	High seroprevalence of Pneumocystis infection in Spanish children. Clinical Microbiology and Infection, 2004, 10, 1029-1031.	2.8	63
51	Seroprevalence of Pneumocystis Human Infection in Southern Spain. Journal of Eukaryotic Microbiology, 2003, 50, 649-650.	0.8	7
52	Antifungal Activities of Two New Azasordarins, GW471552 and GW471558, in Experimental Models of Oral and Vulvovaginal Candidiasis in Immunosuppressed Rats. Antimicrobial Agents and Chemotherapy, 2001, 45, 3304-3309.	1.4	24
53	Antibacterial Activities and Pharmacokinetics of E-4767 and E-5065, Two New 8-Chlorofluoroquinolones with a 7-Azetidin Ring Substituent. Antimicrobial Agents and Chemotherapy, 2001, 45, 3113-3121.	1.4	4
54	Polyphasic Taxonomy of a Novel Yeast Isolated from Antarctic Environment; Description of Cryptococcus victoriae sp. nov Systematic and Applied Microbiology, 1999, 22, 97-105.	1.2	58

SANTIAGO FERRER

#	Article	IF	CITATIONS
55	Genetic analysis of the chitinase system of Serratia marcescens 2170. Journal of Bacteriology, 1997, 179, 7111-7117.	1.0	134
56	Molecular characterization of a 17-kDa outer-membrane protein from Klebsiella pneumoniae. Research in Microbiology, 1997, 148, 133-143.	1.0	23
57	Bacteriocin 28b from <i>Serratia marcescens</i> N28b: identification of <i>Escherichia coli</i> surface components involved in bacteriocin binding and translocation. Canadian Journal of Microbiology, 1996, 42, 19-26.	0.8	21
58	Cloning and characterization of two Serratia marcescens genes involved in core lipopolysaccharide biosynthesis. Journal of Bacteriology, 1996, 178, 5741-5747.	1.0	24
59	Genetic evidence for an activator required for induction of colicin-like bacteriocin 28b production in Serratia marcescens by DNA-damaging agents. Journal of Bacteriology, 1996, 178, 951-960.	1.0	32
60	A 17 kDa outer-membrane protein (Omp4) from Serratia marcescens confers partial resistance to bacteriocin 28b when expressed in Escherichia coli. Microbiology (United Kingdom), 1995, 141, 2535-2542.	0.7	11
61	Bacteriocin 28b, a chromosomally encoded bacteriocin produced by most Serratia marcescens biotypes. Research in Microbiology, 1995, 146, 477-483.	1.0	35
62	Protection against bacteriocin 28b in Serratia matcescens is apparently not related to the expression of an immunity gene. Canadian Journal of Microbiology, 1995, 41, 217-226.	0.8	6
63	Cloning and DNA sequence analysis of a bacteriocin gene of Serratia marcescens. Journal of General Microbiology, 1992, 138, 1737-1743.	2.3	26