

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR-Based Construction of a BL21 (DE3)-Derived Variant Strain Library to Rapidly Improve Recombinant Protein Production. ACS Synthetic Biology, 2022, 11, 343-352.	3.8	14
2	Genome-scale metabolic network models: from first-generation to next-generation. Applied Microbiology and Biotechnology, 2022, 106, 4907-4920.	3.6	19
3	Microbial physiological engineering increases the efficiency of microbial cell factories. Critical Reviews in Biotechnology, 2021, 41, 339-354.	9.0	14
4	Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nature Catalysis, 2021, 4, 395-406.	34.4	75
5	Strategies for enhancing terpenoids accumulation in microalgae. Applied Microbiology and Biotechnology, 2021, 105, 4919-4930.	3.6	19
6	Analysis of Phenol Biodegradation in Antibiotic and Heavy Metal Resistant Acinetobacter lwoffii NL1. Frontiers in Microbiology, 2021, 12, 725755.	3.5	21
7	Development of an Efficient Gene Editing Tool in Schizochytrium sp. and Improving Its Lipid and Terpenoid Biosynthesis. Frontiers in Nutrition, 2021, 8, 795651.	3.7	20
8	Light-powered Escherichia coli cell division for chemical production. Nature Communications, 2020, 11, 2262.	12.8	51
9	Improving lysine production through construction of an <i>Escherichia coli</i> enzymeâ€constrained model. Biotechnology and Bioengineering, 2020, 117, 3533-3544.	3.3	47
10	Engineering Escherichia coli lifespan for enhancing chemical production. Nature Catalysis, 2020, 3, 307-318.	34.4	61
11	Comprehensive understanding of <i>Saccharomyces cerevisiae</i> phenotypes with wholeâ€cell model WM_S288C. Biotechnology and Bioengineering, 2020, 117, 1562-1574.	3.3	23
12	Dynamic consolidated bioprocessing for direct production of xylonate and shikimate from xylan by Escherichia coli. Metabolic Engineering, 2020, 60, 128-137.	7.0	20
13	Genetic Circuit-Assisted Smart Microbial Engineering. Trends in Microbiology, 2019, 27, 1011-1024.	7.7	45
14	Programmable biomolecular switches for rewiring flux in Escherichia coli. Nature Communications, 2019, 10, 3751.	12.8	84
15	Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1. Microbial Cell Factories, 2019, 18, 13.	4.0	27
16	Engineering Microorganisms for Enhanced CO2 Sequestration. Trends in Biotechnology, 2019, 37, 532-547.	9.3	86
17	Genome-scale biological models for industrial microbial systems. Applied Microbiology and Biotechnology, 2018, 102, 3439-3451.	3.6	14
18	Metabolic Model Reconstruction and Analysis of an Artificial Microbial Ecosystem. Methods in Molecular Biology, 2018, 1716, 219-238.	0.9	1

Снао Үе

#	Article	IF	CITATIONS
19	Reconstruction and Analysis of a Genome-Scale Metabolic Model of Ganoderma lucidum for Improved Extracellular Polysaccharide Production. Frontiers in Microbiology, 2018, 9, 3076.	3.5	26
20	Genome-scale metabolic modelling common cofactors metabolism in microorganisms. Journal of Biotechnology, 2017, 251, 1-13.	3.8	15
21	IMGMD: A platform for the integration and standardisation of In silico Microbial Genome-scale Metabolic Models. Scientific Reports, 2017, 7, 727.	3.3	9
22	Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production. Scientific Reports, 2017, 7, 7911.	3.3	27
23	Genome Sequencing of the Pyruvate-producing Strain Candida glabrata CCTCC M202019 and Genomic Comparison with Strain CBS138. Scientific Reports, 2016, 6, 34893.	3.3	13
24	Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114. Gene, 2016, 575, 615-622.	2.2	27
25	Reconstruction and in silico analysis of an Actinoplanes sp. SE50/110 genome-scale metabolic model for acarbose production. Frontiers in Microbiology, 2015, 6, 632.	3.5	10
26	Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Systems Biology, 2015, 9, 1.	3.0	131
27	Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genomics, 2015, 16, 799.	2.8	50
28	Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. Journal of Biotechnology, 2014, 182-183, 61-67.	3.8	34