List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. Journal of Cell Science, 2009, 122, 289-299.	1.2	109
2	Laminin-111-derived peptides and cancer. Cell Adhesion and Migration, 2013, 7, 150-159.	1.1	87
3	TM14 Is a New Member of the Fibulin Family (Fibulin-7) That Interacts with Extracellular Matrix Molecules and Is Active for Cell Binding. Journal of Biological Chemistry, 2007, 282, 30878-30888.	1.6	86
4	Laminin α1 Chain LG4 Module Promotes Cell Attachment through Syndecans and Cell Spreading through Integrin α2β1. Journal of Biological Chemistry, 2006, 281, 32929-32940.	1.6	73
5	Perlecan modulates VEGF signaling and is essential for vascularization in endochondral bone formation. Matrix Biology, 2012, 31, 234-245.	1.5	72
6	A collagen-mimetic triple helical supramolecule that evokes integrin-dependent cell responses. Biomaterials, 2010, 31, 1925-1934.	5.7	57
7	Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering. Biomaterials, 2012, 33, 4118-4125.	5.7	51
8	Angiogenic activitiy of syndecan-binding laminin peptide AG73 (RKRLQVQLSIRT). Archives of Biochemistry and Biophysics, 2007, 459, 249-255.	1.4	49
9	Integrin-dependent cell behavior on ECM peptide-conjugated chitosan membranes. Biopolymers, 2007, 88, 122-130.	1.2	39
10	Clustering of Syndecan-4 and Integrin β1 by Laminin α3 Chain–derived Peptide Promotes Keratinocyte Migration. Molecular Biology of the Cell, 2009, 20, 3012-3024.	0.9	39
11	Cell surface receptor-specific scaffold requirements for adhesion to laminin-derived peptide–chitosan membranes. Biomaterials, 2010, 31, 3237-3243.	5.7	37
12	The Lutheran/Basal Cell Adhesion Molecule Promotes Tumor Cell Migration by Modulating Integrin-mediated Cell Attachment to Laminin-511 Protein. Journal of Biological Chemistry, 2013, 288, 30990-31001.	1.6	36
13	Biological activity of laminin peptideâ€conjugated alginate and chitosan matrices. Biopolymers, 2010, 94, 711-720.	1.2	35
14	Construction and Activity of a Synthetic Basement Membrane with Active Laminin Peptides and Polysaccharides. Chemistry - A European Journal, 2011, 17, 10500-10508.	1.7	35
15	Mixed peptide–chitosan membranes to mimic the biological activities of a multifunctional laminin α1 chain LG4 module. Biomaterials, 2009, 30, 1596-1603.	5.7	32
16	Dermatopontin Promotes Epidermal Keratinocyte Adhesion via α3β1 Integrin and a Proteoglycan Receptor. Biochemistry, 2010, 49, 147-155.	1.2	32
17	Identification of Multiple Amyloidogenic Sequences in Laminin-1. Biochemistry, 2007, 46, 3966-3974.	1.2	30
18	Cell adhesive peptide screening of the mouse laminin α1 chain G domain. Archives of Biochemistry and Biophysics, 2010, 503, 213-222.	1.4	29

#	Article	IF	CITATIONS
19	Syndecan―and integrinâ€binding peptides synergistically accelerate cell adhesion. FEBS Letters, 2010, 584, 3381-3385.	1.3	25
20	Laminin-111-derived peptide-hyaluronate hydrogels as a synthetic basement membrane. Biomaterials, 2013, 34, 6539-6547.	5.7	24
21	Screening of integrin-binding peptides from the laminin α4 and α5 chain G domain peptide library. Archives of Biochemistry and Biophysics, 2012, 521, 32-42.	1.4	23
22	A novel cellâ€adhesive scaffold material for delivering keratinocytes reduces granulation tissue in dermal wounds. Wound Repair and Regeneration, 2009, 17, 127-135.	1.5	22
23	Identification of biologically active sequences in the laminin α2 chain G domain. Archives of Biochemistry and Biophysics, 2010, 497, 43-54.	1.4	21
24	Reconstitution of laminin-111 biological activity using multiple peptide coupled to chitosan scaffolds. Biomaterials, 2012, 33, 4241-4250.	5.7	21
25	Upregulation of ZO-1 in Cultured Human Corneal Epithelial Cells by a Peptide (PHSRN) Corresponding to the Second Cell-Binding Site of Fibronectin. , 2009, 50, 2757.		20
26	Chain-Specific Heparin-Binding Sequences in the Laminin α Chain LG45 Modules. Biochemistry, 2009, 48, 5375-5381.	1.2	20
27	ldentification of α-dystroglycan binding sequences in the laminin α2 chain LG4–5 module. Matrix Biology, 2010, 29, 143-151.	1.5	20
28	Design and synthesis of amidine-type peptide bond isosteres: application of nitrile oxide derivatives as active ester equivalents in peptide and peptidomimetics synthesis. Organic and Biomolecular Chemistry, 2011, 9, 3421.	1.5	18
29	Biologically Active Sequences in the Mouse Laminin $\hat{I}\pm 3$ Chain G Domain. Biochemistry, 2009, 48, 10522-10532.	1.2	16
30	Identification of Cell Adhesive Sequences in the N-terminal Region of the Laminin α2 Chain. Journal of Biological Chemistry, 2012, 287, 25111-25122.	1.6	16
31	Design and activity of multifunctional fibrils using receptor-specific small peptides. Biomaterials, 2009, 30, 6731-6738.	5.7	15
32	Sequence specificity of the PHSRN peptide from fibronectin on corneal epithelial migration. Biochemical and Biophysical Research Communications, 2009, 379, 346-350.	1.0	15
33	Identification of peptides derived from the Câ€ŧerminal domain of fibulinâ€7 active for endothelial cell adhesion and tube formation disruption. Biopolymers, 2016, 106, 184-195.	1.2	15
34	Mixed Peptide-Conjugated Chitosan Matrices as Multi-Receptor Targeted Cell-Adhesive Scaffolds. International Journal of Molecular Sciences, 2018, 19, 2713.	1.8	15
35	Conformation of nucleoplasmin and its interaction with DNA-protamine complex as a simple model of fish sperm nuclei. International Journal of Biological Macromolecules, 1997, 20, 171-178.	3.6	12
36	Maintenance of hepatic differentiation by hepatocyte attachment peptides derived from laminin chains. Journal of Biomedical Materials Research - Part A, 2011, 99A, 203-210.	2.1	10

#	Article	IF	CITATIONS
37	Cell behavior on protein matrices containing laminin α1 peptide AG73. Biomaterials, 2011, 32, 4327-4335.	5.7	10
38	Synthesis of a Chloroalkene Dipeptide Isostere-Containing Peptidomimetic and Its Biological Application. ACS Medicinal Chemistry Letters, 2018, 9, 6-10.	1.3	10
39	Internalization of CD239 highly expressed in breast cancer cells: a potential antigen for antibody-drug conjugates. Scientific Reports, 2018, 8, 6612.	1.6	10
40	Cell attachment and spreading activity of mixed laminin peptide–chitosan membranes. Biopolymers, 2013, 100, 751-759.	1.2	9
41	Suppression of cell adhesion through specific integrin crosstalk on mixed peptide-polysaccharide matrices. Biomaterials, 2015, 37, 73-81.	5.7	9
42	Mixed Fibronectin-Derived Peptides Conjugated to a Chitosan Matrix Effectively Promotes Biological Activities through Integrins, α4β1, α5β1, αvβ3, and Syndecan. BioResearch Open Access, 2016, 5, 356-366.	2.6	9
43	Effect of spacer length and type on the biological activity of peptide–polysaccharide matrices. Biopolymers, 2016, 106, 512-520.	1.2	9
44	Characterization of dystroglycan binding in adhesion of human induced pluripotent stem cells to laminin-511 E8 fragment. Scientific Reports, 2019, 9, 13037.	1.6	9
45	The Influence of Tribenoside on Expression and Deposition of Epidermal Laminins in HaCaT Cells. Biological and Pharmaceutical Bulletin, 2010, 33, 307-310.	0.6	8
46	Biological Activities of the Homologous Loop Regions in the Laminin α Chain LG Modules. Biochemistry, 2014, 53, 3699-3708.	1.2	8
47	Cell Adhesion Activity of Peptides Conjugated to Polysaccharides. Current Protocols in Cell Biology, 2018, 80, e53.	2.3	8
48	Mechanism of salmon sperm decondensation by nucleoplasmin. International Journal of Biological Macromolecules, 1999, 26, 95-101.	3.6	7
49	Identification of laminin <i>α</i> 5 short arm peptides active for endothelial cell attachment and tube formation. Journal of Peptide Science, 2017, 23, 666-673.	0.8	7
50	Active Peptide-Conjugated Chitosan Matrices as an Artificial Basement Membrane. Polymers, 2015, 7, 281-297.	2.0	6
51	Structural Study of Cell Attachment Peptide Derived from Laminin by Molecular Dynamics Simulation. PLoS ONE, 2016, 11, e0149474.	1.1	5
52	Down-regulation of cell adhesion via rho-associated protein kinase (ROCK) pathway promotes tumor cell migration on laminin-511. Experimental Cell Research, 2016, 344, 76-85.	1.2	5
53	An Anti-Human Lutheran Glycoprotein Phage Antibody Inhibits Cell Migration on Laminin-511: Epitope Mapping of the Antibody. PLoS ONE, 2017, 12, e0167860.	1.1	5
54	Amino Acid Sequence Requirements of Laminin β1 Chain Peptide B133 (DISTKYFQMSLE) for Amyloid-like Fibril Formation, Syndecan Binding, and Neurite Outgrowth Promotion. Biochemistry, 2010, 49, 5909-5918.	1.2	4

#	Article	IF	CITATIONS
55	Doubleâ€stranded <scp>DNA</scp> stereoselectively promotes aggregation of amyloidâ€like fibrils and generates peptide/ <scp>DNA</scp> matrices. Biopolymers, 2014, 102, 465-472.	1.2	4
56	Soluble Lutheran/basal cell adhesion molecule is detectable in plasma of hepatocellular carcinoma patients and modulates cellular interaction with laminin-511 in vitro. Experimental Cell Research, 2014, 328, 197-206.	1.2	4
57	Screening of integrin-binding peptides in a laminin peptide library derived from the mouse laminin β chain short arm regions. Archives of Biochemistry and Biophysics, 2014, 550-551, 33-41.	1.4	4
58	Biological activity of peptideâ€conjugated polyion complex matrices consisting of alginate and chitosan. Biopolymers, 2017, 108, e22983.	1.2	4
59	Identification of specific integrin cross-talk for dermal fibroblast cell adhesion using a mixed peptide-chitosan matrix. Journal of Biomaterials Applications, 2019, 33, 893-902.	1.2	4
60	Fibulin-7 C-terminal fragment and its active synthetic peptide suppress choroidal and retinal neovascularization. Microvascular Research, 2020, 129, 103986.	1.1	3
61	Effect of Nucleoplasmin on a Nucleosome Structure. Polymer Journal, 2002, 34, 184-193.	1.3	2
62	B133 (DSITKYFQMSLE), a laminin β1-derived peptide, contains distinct core sequences for both integrin α2β1-mediated cell adhesion and amyloid-like fibril formation. Archives of Biochemistry and Biophysics, 2010, 500, 189-195.	1.4	2
63	Identification of Active Sequences in the L4a Domain of Laminin α5 Promoting Neurite Elongation. Biochemistry, 2012, 51, 4950-4958.	1.2	2
64	ldentification of active sequences in human laminin α5 G domain. Journal of Peptide Science, 2019, 25, e3218.	0.8	2
65	Structural Requirement of Fibrogenic Laminin-Derived Peptide A119 (LSNIDYILIKAS) for Amyloid-like Fibril Formation and Cellular Activity. Biochemistry, 2012, 51, 8218-8225.	1.2	0
66	3P017 Identification of structure determinant amino acid residues in the A2G80 peptide derived from laminin α2 by molecular dynamics simulation(01A. Protein: Structure,Poster). Seibutsu Butsuri, 2013, 53, S214.	0.0	0
67	Active sites of the laminin alpha1 chain LG4 module for syndecan binding and cell adhesion and spreading. FASEB Journal, 2006, 20, A1097.	0.2	0
68	Structural Requirement of Fibrogenic Peptide AG97 (SAKVDAIGLEIV) and B160 (VILQQSAADIAR) for Amyloid-Like Fibril Formation and Cellular Activity. , 2015, , .		0