César de JuliÃ;n FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588365/publications.pdf

Version: 2024-02-01

110 papers

2,883 citations

186265 28 h-index 197818 49 g-index

118 all docs

118 docs citations

118 times ranked

4195 citing authors

#	Article	IF	CITATIONS
1	High Magnetic Field Magneto-optics on Plasmonic Silica-Embedded Silver Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 1939-1945.	3.1	10
2	3d Metal Doping of Core@Shell Wüstite@ferrite Nanoparticles as a Promising Route toward Room Temperature Exchange Bias Magnets. Small, 2022, 18, e2107426.	10.0	11
3	Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process. Journal of Alloys and Compounds, 2022, 917, 165531.	5 . 5	14
4	Magneto-Plasmonic Nanoparticles. Springer Series in Materials Science, 2021, , 107-136.	0.6	2
5	Optimizing the magnetic properties of hard and soft materials for producing exchange spring permanent magnets. Journal Physics D: Applied Physics, 2021, 54, 134003.	2.8	17
6	Dielectric Effects in FeO <i></i> -Coated Au Nanoparticles Boost the Magnetoplasmonic Response: Implications for Active Plasmonic Devices. ACS Applied Nano Materials, 2021, 4, 1057-1066.	5.0	17
7	Magnetic performance of SrFe ₁₂ O ₄ hybrid magnets prepared by spark plasma sintering. Journal Physics D: Applied Physics, 2021, 54, 204002.	2.8	5
8	High magnetic coercive field in Caâ€Alâ€Cr substituted strontium hexaferrite. Journal of Alloys and Compounds, 2021, 883, 160768.	5 . 5	9
9	OBP-functionalized/hybrid superparamagnetic nanoparticles for <i>Candida albicans</i> treatment. RSC Advances, 2021, 11, 11256-11265.	3.6	3
10	FeCo Nanowire–Strontium Ferrite Powder Composites for Permanent Magnets with High-Energy Products. ACS Applied Nano Materials, 2020, 3, 9842-9851.	5.0	14
11	Unraveling the mechanism of the one-pot synthesis of exchange coupled Co-based nano-heterostructures with a high energy product. Nanoscale, 2020, 12, 14076-14086.	5.6	6
12	Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy. Nanoscale, 2019, 11, 72-88.	5.6	69
13	Giant magneto-optical response in H $<$ sup $>+<$ sup $>$ irradiated Zn $<$ sub $>$ 1â * x $<$ sub $>$ Co $<$ sub $>$ x $<$ sub $>$ O thin films. Journal of Materials Chemistry C, 2019, 7, 78-85.	5.5	19
14	Addressing the Influence of Localized Plasmon Resonance on the Magneto-Optical Properties of Cobalt Ferrite Nanoparticles. Journal of Nanoscience and Nanotechnology, 2019, 19, 4946-4953.	0.9	4
15	Plasmon-enhanced magneto-optical detection of single-molecule magnets. Materials Horizons, 2019, 6, 1148-1155.	12.2	16
16	Role of Zn ²⁺ Substitution on the Magnetic, Hyperthermic, and Relaxometric Properties of Cobalt Ferrite Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 6148-6157.	3.1	65
17	Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine, 2019, 14, 727-752.	3.3	51
18	Colloidal Au/iron oxide nanocrystal heterostructures: magnetic, plasmonic and magnetic hyperthermia properties. Journal of Materials Chemistry C, 2018, 6, 12329-12340.	5. 5	8

#	Article	IF	Citations
19	Tailoring nanostructured surfaces with plasmonic/magnetic multifunctional response. Applied Physics Letters, 2018, 113, 101908.	3.3	2
20	Topotaxial Phase Transformation in Cobalt Doped Iron Oxide Core/Shell Hard Magnetic Nanoparticles. Chemistry of Materials, 2017, 29, 1279-1289.	6.7	29
21	Functional magneto-plasmonic biosensors transducers: Modelling and nanoscale analysis. Sensors and Actuators B: Chemical, 2017, 239, 100-112.	7.8	25
22	Energy Product Enhancement in Imperfectly Exchangeâ€Coupled Nanocomposite Magnets. Advanced Electronic Materials, 2016, 2, 1500365.	5.1	47
23	Strongly Exchange Coupled Core Shell Nanoparticles with High Magnetic Anisotropy: A Strategy toward Rare-Earth-Free Permanent Magnets. Chemistry of Materials, 2016, 28, 4214-4222.	6.7	98
24	Tuning morphology and magnetism of magnetite nanoparticles by calix[8] arene-induced oriented aggregation. CrystEngComm, 2016, 18, 8591-8598.	2.6	8
25	Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drugâ€Loaded Magnetic Solid Lipid Nanoparticles. Advanced Healthcare Materials, 2015, 4, 1681-1690.	7.6	81
26	Exploring the magnetic properties of ferrite nanoparticles for the development of rare-earth-free permanent magnet. , 2015, , .		4
27	Drug Targeting: Active Targeting of Sorafenib: Preparation, Characterization, and In Vitro Testing of Drug-Loaded Magnetic Solid Lipid Nanoparticles (Adv. Healthcare Mater. 11/2015). Advanced Healthcare Materials, 2015, 4, 1734-1734.	7.6	1
28	Magneto-Optical Probe for Investigation of Multiphase Fe Oxide Nanosystems. Chemistry of Materials, 2015, 27, 466-473.	6.7	18
29	Developing functionalized Fe ₃ O ₄ –Au nanoparticles: a physico-chemical insight. Physical Chemistry Chemical Physics, 2015, 17, 6087-6097.	2.8	21
30	Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia. Nanoscale, 2015, 7, 7717-7725.	5.6	16
31	Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet. Chemistry of Materials, 2015, 27, 4048-4056.	6.7	237
32	Coprecipitation of Oxalates: An Easy and Reproducible Wetâ€Chemistry Synthesis Route for Transitionâ€Metal Ferrites. European Journal of Inorganic Chemistry, 2014, 2014, 875-887.	2.0	30
33	Electrochemical characterization of core@shell CoFe2O4/Au composite. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	14
34	Circular Magnetoplasmonic Modes in Gold Nanoparticles. Nano Letters, 2013, 13, 4785-4789.	9.1	113
35	Spin-Polarization Transfer in Colloidal Magnetic-Plasmonic Au/Iron Oxide Hetero-nanocrystals. ACS Nano, 2013, 7, 857-866.	14.6	64
36	Supported $\hat{l}\mu$ and \hat{l}^2 iron oxide nanomaterials by chemical vapor deposition: structure, morphology and magnetic properties. CrystEngComm, 2013, 15, 1039-1042.	2.6	39

#	Article	IF	Citations
37	Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale, 2013, 5, 5611.	5.6	92
38	Au clustering formation by implantation in silica: optical, magnetic and sensing properties. Radiation Effects and Defects in Solids, 2013, 168, 418-430.	1.2	1
39	Characterization of Free-Standing PEDOT:PSS/Iron Oxide Nanoparticle Composite Thin Films and Application As Conformable Humidity Sensors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6324-6332.	8.0	106
40	Charge compensation and magnetic properties in Sr and Cu doped La-Fe perovskites. EPJ Web of Conferences, 2013, 40, 15005.	0.3	5
41	Structural and magnetic properties of mesoporous SiO2 nanoparticles impregnated with iron oxide or cobalt-iron oxide nanocrystals. Journal of Materials Chemistry, 2012, 22, 19276.	6.7	35
42	Crystal structures and magnetic properties of strontium and copper doped lanthanum ferrites. Journal of Solid State Chemistry, 2012, 191, 33-39.	2.9	53
43	Exploring the Effect of Co Doping in Fine Maghemite Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 8261-8270.	3.1	84
44	Near-field optical characterization of interacting and non-interacting gold nanoparticles embedded in a silica thin film. Optics Communications, 2011, 284, 3118-3123.	2.1	0
45	Photocoercivity of Nano‧tabilized Au:Fe Superparamagnetic Nanoparticles. Advanced Materials, 2010, 22, 4054-4058.	21.0	39
46	At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles. Dalton Transactions, 2010, 39, 8464.	3.3	89
47	Coupling between magnetic and optical properties of stable Au–Fe solid solution nanoparticles. Nanotechnology, 2010, 21, 165701.	2.6	36
48	Electronic and Magnetic Properties of Ni Nanoparticles Embedded in Various Organic Semiconductor Matrices. Journal of Physical Chemistry B, 2009, 113, 4565-4570.	2.6	20
49	X-ray Magnetic Circular Dichroism and Small Angle Neutron Scattering Studies of Thiol Capped Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 6434-6438.	0.9	24
50	Surface plasmon resonance optical gas sensing of nanostructured ZnO films. Sensors and Actuators B: Chemical, 2008, 130, 531-537.	7.8	49
51	Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sensors and Actuators B: Chemical, 2008, 132, 107-115.	7.8	89
52	Magneto-optical studies on the molecular cluster Fe4 in different polymeric environments. Inorganica Chimica Acta, 2008, 361, 3970-3974.	2.4	9
53	Nanostructure, composition and magnetic properties in soft and hard Co–Ni nanoparticles: The effect on the magnetic anisotropy. Inorganica Chimica Acta, 2008, 361, 4138-4142.	2.4	13
54	Optical Sensing to Organic Vapors of Fluorinated Polyimide Nanocomposites containing Silver Nanoclusters. , 2008, , .		0

#	Article	IF	CITATIONS
55	MAGNETIC PROPERTIES OF ORGANIC COATED GOLD SURFACES. Modern Physics Letters B, 2007, 21, 303-319.	1.9	14
56	Single-electron transport and magnetic properties of Feâ 'SiO2nanocomposites prepared by ion implantation. Physical Review B, 2007, 75, .	3.2	22
57	Magnetism in Polymers with Embedded Gold Nanoparticles. Advanced Materials, 2007, 19, 875-877.	21.0	51
58	Thermal evolution of cobalt nanocrystals embedded in silica. Materials Science and Engineering C, 2007, 27, 193-196.	7.3	9
59	Surface plasmon resonance study on the optical sensing properties of nanometric polyimide films to volatile organic vapours. Sensors and Actuators B: Chemical, 2007, 120, 712-718.	7.8	13
60	Optical response of plasma-deposited zinc phthalocyanine films to volatile organic compounds. Sensors and Actuators B: Chemical, 2007, 127, 150-156.	7.8	21
61	Magneto-optical detection of the relaxation dynamics of alloy nanoparticles with a high-stability magnetic circular dichroism setup. Journal of Magnetism and Magnetic Materials, 2007, 316, e798-e801.	2.3	8
62	Formation of silver nanoclusters in transparent polyimides by Ag-K ion-exchange process. European Physical Journal D, 2007, 42, 243-251.	1.3	12
63	Nanostructural and optical properties of cobalt and nickel–oxide/silica nanocomposites. Materials Science and Engineering C, 2006, 26, 987-991.	7.3	19
64	Annealing effects on the structural and magnetic properties of Fe–Al silica nanocomposites prepared by sequential ion implantation. Materials Science and Engineering C, 2006, 26, 1151-1155.	7.3	2
65	Size dependent hcp-to-fcc transition temperature in Co nanoclusters obtained by ion implantation in silica. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 206-209.	1.4	15
66	Structure and thermal stability of Au–Fe alloy nanoclusters formed by sequential ion implantation in silica. Nuclear Instruments & Methods in Physics Research B, 2006, 250, 225-228.	1.4	15
67	Optical sensing to organic vapors of fluorinated polyimide nanocomposites containing silver nanoclusters. Sensors and Actuators B: Chemical, 2006, 118, 418-424.	7.8	13
68	Laser generated plasmas characterized under magnetic field. Applied Physics Letters, 2006, 88, 044102.	3.3	14
69	Dynamics of compositional evolution of Pd-Cu alloy nanoclusters upon heating in selected atmospheres. Physical Review B, 2005, 71, .	3.2	29
70	Magnetic properties of Co–Cu nanoparticles dispersed in silica matrix. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 187-190.	2.3	19
71	Study of the gas optical sensing properties of Au-polyimide nanocomposite films prepared by ion implantation. Sensors and Actuators B: Chemical, 2005, 111-112, 225-229.	7.8	37
72	<title>Gold/titania nanocomposites thin films for optical gas sensing devices</title> ., 2005, , .		5

#	Article	IF	Citations
73	Influence of the temperature dependence of anisotropy on the magnetic behavior of nanoparticles. Physical Review B, 2005, 72, .	3.2	61
74	Laser ablation using high repetition rate Cu/HBr laser. Thin Solid Films, 2004, 453-454, 345-349.	1.8	0
75	Structural and magnetic properties of Fe–Al silica composites prepared by sequential ion implantation. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 245-250.	1.4	28
76	Compositional evolution of Pd-based nanoclusters under thermal annealing in ion implanted SiO2. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 433-437.	1.4	7
77	Superparamagnetism and coercivity in HCP-Co nanoparticles dispersed in silica matrix. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1235-E1236.	2.3	10
78	Magnetic properties of Co–Ni alloy nanoparticles prepared by the sol-gel technique. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1251-E1252.	2.3	22
79	Radiofrequency magnetron co-sputtering deposition synthesis of Co-based nanocomposite glasses for optical and magnetic applications. Applied Surface Science, 2004, 226, 62-67.	6.1	10
80	Structure and optical properties of Au-polyimide nanocomposite films prepared by ion implantation. Applied Physics Letters, 2004, 85, 5712-5714.	3.3	58
81	Structural and physical properties of cobalt nanocluster composite glasses. Journal of Non-Crystalline Solids, 2004, 336, 148-152.	3.1	18
82	Structure and magnetic properties of Fe–Pd silica composites prepared by sequential ion implantation. Journal of Non-Crystalline Solids, 2004, 345-346, 681-684.	3.1	7
83	Au–Cu and Pd–Cu nanoclusters obtained by ion implantation in silica: stability under thermal annealing. Journal of Non-Crystalline Solids, 2004, 345-346, 667-670.	3.1	4
84	Blocking temperature distribution in implanted Co–Ni nanoparticles obtained by magneto-optical measurements. Journal of Magnetism and Magnetic Materials, 2003, 262, 111-115.	2.3	7
85	Grazing-incidence small-angle X-ray scattering and X-ray diffraction from magnetic clusters obtained by Co + Ni sequential ion implantation in silica. Journal of Applied Crystallography, 2003, 36, 732-735.	4.5	6
86	Characterization of FeCoâ^'SiO2Nanocomposite Films Prepared by Solâ^'Gel Dip Coating. Chemistry of Materials, 2003, 15, 2201-2207.	6.7	35
87	The Magnetic Properties of Metal-Alloy Glass Composites Prepared by Ion Implantation. AIP Conference Proceedings, 2003, , .	0.4	0
88	Synthesis, Structure, and Magnetic Properties of Co, Ni, and Coâ^'Ni Alloy Nanocluster-Doped SiO2Films by Solâ^'Gel Processing. Chemistry of Materials, 2002, 14, 3440-3447.	6.7	71
89	Sequential ion implantation of copper and cobalt in silica glass: A study by synchrotron radiation techniques. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 406-410.	1.4	13
90	Synthesis of wide band gap nanocrystals by ion implantation. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 447-451.	1.4	21

#	Article	IF	Citations
91	Magnetic characterization of ion implanted CoNi-SiO2 granular film. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 627-630.	2.3	6
92	Structure and magnetic properties of alloy-based nanoparticles silica composites prepared by ion-implantation and sol–gel techniques. Materials Science and Engineering C, 2001, 15, 59-61.	7.3	18
93	Influence of annealing atmosphere on metal and metal alloy nanoclusters produced by ion implantation in silica. Nuclear Instruments & Methods in Physics Research B, 2001, 178, 176-179.	1.4	32
94	Influence of post-implantation thermal and laser annealing on the stability of metal–alloy nanoclusters in silica. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 410-416.	1.4	21
95	Magnetic properties of Co and Ni based alloy nanoparticles dispersed in a silica matrix. Nuclear Instruments & Methods in Physics Research B, 2001, 175-177, 479-484.	1.4	26
96	Metal-Alloy Nanocluster Formation in Silica Glass by Sequential Ion Implantation. Materials Research Society Symposia Proceedings, 2000, 647, 1.	0.1	0
97	Thin film deposition by magnetic field-assisted pulsed laser assembly. Applied Surface Science, 1999, 138-139, 150-154.	6.1	17
98	Magnetic viscosity of granular Fe films prepared by laser ablation. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 96-98.	2.3	4
99	Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling. Europhysics Letters, 1998, 42, 91-96.	2.0	13
100	Highly homogeneous nanoparticulate Fe films prepared by laser ablation. IEEE Transactions on Magnetics, 1998, 34, 1108-1110.	2.1	4
101	<title>Evolution of the free plasma expansion in jets produced by laser ablation</title> ., 1998, , .		O
102	Magnetic viscosity in melt spun magnets prepared by crystallization of amorphous precursors using different heating rates. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1055-1056.	2.3	2
103	Magnetic viscosity in Feî—¸SiO2 granular solids. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 375-376.	2.3	0
104	Phase segregation and interactions in Dy-substituted melt spun Nd-Fe-B alloys. IEEE Transactions on Magnetics, 1995, 31, 3683-3685.	2.1	4
105	Thermally activated demagnetization in Fe-SiO2 granular solids. Scripta Metallurgica Et Materialia, 1995, 33, 1709-1716.	1.0	6
106	Magnetic hardening by crystallization of amorphous precursors using very high heating rates. Journal of Applied Physics, 1994, 76, 6840-6842.	2.5	3
107	Coercivity of Feâ€SiO2nanocomposite materials prepared by ball milling. Journal of Applied Physics, 1994, 76, 6573-6575.	2.5	42
108	Preparation and magnetic properties of monodispersed Zn ferrites of submicrometric size. Journal of Materials Science, 1993, 28, 2962-2966.	3.7	16

#	Article	IF	CITATIONS
109	AC loss analysis and domain structure in magnetostrictive amorphous wires. Journal of Magnetism and Magnetic Materials, 1992, 115, 295-306.	2.3	14
110	Topical Review: Progress and Prospects of Hard Hexaferrites for Permanent Magnet Applications. Journal Physics D: Applied Physics, 0, , .	2.8	27