Peter Vandenabeele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5587675/publications.pdf

Version: 2024-02-01

537 papers

89,202 citations

135 h-index 280 g-index

552 all docs 552 docs citations

552 times ranked

84381 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
3	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
4	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation, 2009, 16, 3-11.	5.0	2,572
5	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 2012, 19, 107-120.	5.0	2,144
6	Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 2012, 12, 860-875.	12.8	1,984
7	Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Reviews Molecular Cell Biology, 2010, 11, 700-714.	16.1	1,941
8	Necroptosis and its role in inflammation. Nature, 2015, 517, 311-320.	13.7	1,550
9	Targeting Ferroptosis to Iron Out Cancer. Cancer Cell, 2019, 35, 830-849.	7.7	1,385
10	Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 2014, 15, 135-147.	16.1	1,373
11	The molecular machinery of regulated cell death. Cell Research, 2019, 29, 347-364.	5 . 7	1,373
12	Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, 2007, 38, 1133-1147.	1,2	1,129
13	Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance. Immunity, 2013, 38, 209-223.	6.6	1,085
14	Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin $1\hat{l}^2$ in salmonella-infected macrophages. Nature Immunology, 2006, 7, 576-582.	7.0	1,028
15	Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 2006, 440, 233-236.	13.7	1,016
16	Inhibition of Caspases Increases the Sensitivity of L929 Cells to Necrosis Mediated by Tumor Necrosis Factor. Journal of Experimental Medicine, 1998, 187, 1477-1485.	4.2	833
17	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
18	Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16836-16841.	3.3	801

#	Article	IF	CITATIONS
19	Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia Journal of Experimental Medicine, 1993, 177, 547-550.	4.2	795
20	Toxic proteins released from mitochondria in cell death. Oncogene, 2004, 23, 2861-2874.	2.6	791
21	More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene, 1999, 18, 7719-7730.	2.6	790
22	Two tumour necrosis factor receptors: structure and function. Trends in Cell Biology, 1995, 5, 392-399.	3.6	749
23	Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research, 2011, 21, 290-304.	5.7	710
24	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
25	MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates. Cell Reports, 2014, 7, 971-981.	2.9	656
26	A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO Journal, 2012, 31, 1062-1079.	3.5	641
27	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death and Differentiation, 2005, 12, 1463-1467.	5.0	618
28	Suppression of Interleukin-33 Bioactivity through Proteolysis by Apoptotic Caspases. Immunity, 2009, 31, 84-98.	6.6	611
29	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death., 2020, 8, e000337.		610
30	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	5.0	599
31	The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death and Differentiation, 2002, 9, 1031-1042.	5.0	572
32	Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology, 2011, 32, 157-164.	2.9	564
33	Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1371-1387.	0.5	555
34	Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death and Disease, 2010, 1, e18-e18.	2.7	555
35	Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods, 2008, 44, 205-221.	1.9	546
36	Dual Signaling of the Fas Receptor: Initiation of Both Apoptotic and Necrotic Cell Death Pathways. Journal of Experimental Medicine, 1998, 188, 919-930.	4.2	522

3

#	Article	IF	CITATIONS
37	Caspases in cell survival, proliferation and differentiation. Cell Death and Differentiation, 2007, 14, 44-55.	5.0	517
38	Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death and Differentiation, 2011, 18, 581-588.	5.0	499
39	Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. Journal of Clinical Investigation, 1999, 104, 541-549.	3.9	499
40	Pannexin-1-Mediated Recognition of Bacterial Molecules Activates the Cryopyrin Inflammasome Independent of Toll-like Receptor Signaling. Immunity, 2007, 26, 433-443.	6.6	490
41	RIP Kinase-Dependent Necrosis Drives Lethal Systemic Inflammatory Response Syndrome. Immunity, 2011, 35, 908-918.	6.6	490
42	Regulated necrosis: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery, 2016, 15, 348-366.	21.5	481
43	Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death and Differentiation, 2010, 17, 922-930.	5.0	471
44	RIP Kinases at the Crossroads of Cell Death and Survival. Cell, 2009, 138, 229-232.	13.5	468
45	Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB Journal, 2004, 18, 1946-1948.	0.2	464
46	Identification of a new caspase homologue: caspase-14. Cell Death and Differentiation, 1998, 5, 838-846.	5.0	448
47	RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death and Differentiation, 2007, 14, 400-410.	5.0	432
48	The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis. Science Signaling, 2010, 3, re4.	1.6	407
49	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.	3.9	406
50	Initiation and execution mechanisms of necroptosis: an overview. Cell Death and Differentiation, 2017, 24, 1184-1195.	5.0	404
51	Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biology, 2013, 14, R4.	13.9	381
52	Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death and Disease, 2012, 3, e437-e437.	2.7	379
53	Autophagy: for better or for worse. Cell Research, 2012, 22, 43-61.	5.7	373
54	Mitochondrial intermembrane proteins in cell death. Biochemical and Biophysical Research Communications, 2003, 304, 487-497.	1.0	350

#	Article	IF	Citations
55	NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Molecular Cell, 2015, 60, 63-76.	4.5	345
56	Many stimuli pull the necrotic trigger, an overview. Cell Death and Differentiation, 2012, 19, 75-86.	5.0	340
57	ER stress-induced inflammation: does it aid or impede disease progression?. Trends in Molecular Medicine, 2012, 18, 589-598.	3.5	340
58	Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Analytica Chimica Acta, 2000, 407, 261-274.	2.6	324
59	A Decade of Raman Spectroscopy in Art and Archaeology. Chemical Reviews, 2007, 107, 675-686.	23.0	321
60	Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death and Differentiation, 2002, 9, 358-361.	5.0	317
61	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	2.2	317
62	Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Reports, 2016, 15, 274-287.	2.9	317
63	The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death and Differentiation, 2002, 9, 20-26.	5.0	308
64	Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiology Reviews, 2016, 40, 117-132.	3.9	303
65	Major cell death pathways at a glance. Microbes and Infection, 2009, 11, 1050-1062.	1.0	302
66	TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death and Differentiation, 2012, 19, 2003-2014.	5. 0	300
67	Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death and Differentiation, 2001, 8, 1136-1142.	5.0	298
68	Interleukin-10 controls interferon- \hat{I}^3 and tumor necrosis factor production during experimental endotoxemia. European Journal of Immunology, 1994, 24, 1167-1171.	1.6	295
69	Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1709-1726.	2.2	295
70	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	5.0	295
71	clAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death and Differentiation, 2011, 18, 656-665.	5.0	294
72	Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1805, 53-71.	3.3	292

#	Article	IF	Citations
73	Molecular Mechanisms and Pathophysiology of Necrotic Cell Death. Current Molecular Medicine, 2008, 8, 207-220.	0.6	283
74	Targeted Peptidecentric Proteomics Reveals Caspase-7 as a Substrate of the Caspase-1 Inflammasomes. Molecular and Cellular Proteomics, 2008, 7, 2350-2363.	2.5	276
75	Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Letters, 1998, 438, 150-158.	1.3	275
76	The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death and Differentiation, 2008, 15, 453-460.	5.0	275
77	RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature, 2014, 513, 95-99.	13.7	275
78	Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Letters, 1999, 442, 117-121.	1.3	274
79	Caspase-14 protects against epidermal UVB photodamage and water loss. Nature Cell Biology, 2007, 9, 666-674.	4.6	266
80	RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death and Differentiation, 2013, 20, 1381-1392.	5.0	263
81	Beclin1: A role in membrane dynamics and beyond. Autophagy, 2012, 8, 6-17.	4.3	262
82	P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death. FEBS Letters, 1999, 447, 71-75.	1.3	259
83	ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy, 2013, 9, 1292-1307.	4.3	252
84	Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15312-15317.	3.3	251
85	Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunology, Immunotherapy, 2012, 61, 215-221.	2.0	246
86	Connexin-related signaling in cell death: to live or let die?. Cell Death and Differentiation, 2009, 16, 524-536.	5.0	234
87	Many faces of DAMPs in cancer therapy. Cell Death and Disease, 2013, 4, e631-e631.	2.7	234
88	Apoptotic and necrotic cell death induced by death domain receptors. Cellular and Molecular Life Sciences, 2001, 58, 356-370.	2.4	224
89	Role of IL- $1\hat{A}$ and the Nlrp3/caspase- 1 /IL- $1\hat{A}$ axis in cigarette smoke-induced pulmonary inflammation and COPD. European Respiratory Journal, 2011, 38, 1019-1028.	3.1	221
90	Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death and Differentiation, 2000, 7, 1218-1224.	5.0	218

#	Article	IF	Citations
91	Cell death induction by receptors of the TNF family: towards a molecular understanding. FEBS Letters, 1997, 410, 96-106.	1.3	217
92	The Activation of the c-Jun N-terminal Kinase and p38 Mitogen-activated Protein Kinase Signaling Pathways Protects HeLa Cells from Apoptosis Following Photodynamic Therapy with Hypericin. Journal of Biological Chemistry, 1999, 274, 8788-8796.	1.6	203
93	Caspase-14 reveals its secrets. Journal of Cell Biology, 2008, 180, 451-458.	2.3	203
94	The emerging roles of serine protease cascades in the epidermis. Trends in Biochemical Sciences, 2009, 34, 453-463.	3.7	202
95	B cell growth modulating and differentiating activity of recombinant human 26-kd protein (BSF-2,) Tj ETQq1 10.	784314 rş	gBT/Qverloc
96	Raman spectroscopic database of azo pigments and application to modern art studies. Journal of Raman Spectroscopy, 2000, 31, 509-517.	1.2	198
97	Death penalty for keratinocytes: apoptosis versus cornification. Cell Death and Differentiation, 2005, 12, 1497-1508.	5.0	195
98	TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death and Disease, 2011, 2, e230-e230.	2.7	195
99	Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death and Differentiation, 2001, 8, 829-840.	5.0	193
100	Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 2013, 61, 117-129.	1.9	193
101	Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood, 2016, 127, 139-148.	0.6	192
102	Characterization of seven murine caspase family members. FEBS Letters, 1997, 403, 61-69.	1.3	191
103	Patients with COVID-19: in the dark-NETs of neutrophils. Cell Death and Differentiation, 2021, 28, 3125-3139.	5.0	189
104	Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death and Differentiation, 2003, 10, 881-888.	5.0	187
105	Reference database of Raman spectra of pharmaceutical excipients. Journal of Raman Spectroscopy, 2009, 40, 297-307.	1.2	187
106	Terminal Differentiation of Human Keratinocytes and Stratum Corneum Formation is Associated with Caspase-14 Activation. Journal of Investigative Dermatology, 2000, 115, 1148-1151.	0.3	186
107	The proteolytic procaspase activation network: an in vitro analysis. Cell Death and Differentiation, 1999, 6, 1117-1124.	5.0	183
108	Caspase Inhibitors Promote Alternative Cell Death Pathways. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe44-pe44.	4.1	180

#	Article	IF	CITATIONS
109	Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cellular and Molecular Life Sciences, 2010, 67, 1567-1579.	2.4	180
110	Human TNF mutants with selective activity on the p55 receptor. Nature, 1993, 361, 266-269.	13.7	177
111	Phagocytosis of Necrotic Cells by Macrophages Is Phosphatidylserine Dependent and Does Not Induce Inflammatory Cytokine Production. Molecular Biology of the Cell, 2004, 15, 1089-1100.	0.9	177
112	Sesquiterpene lactones as drugs with multiple targets in cancer treatment. Anti-Cancer Drugs, 2012, 23, 883-896.	0.7	176
113	The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biology of the Cell, 2012, 104, 259-270.	0.7	176
114	NOD-like receptors and the innate immune system: Coping with danger, damage and death. Cytokine and Growth Factor Reviews, 2011, 22, 257-276.	3.2	170
115	Interferon- \hat{l}^2 Therapy Against EAE Is Effective Only When Development of the Disease Depends on the NLRP3 Inflammasome. Science Signaling, 2012, 5, ra38.	1.6	168
116	Functional Protection by Acute Phase Proteins $\hat{l}\pm\langle sub\rangle 1\langle sub\rangle$ -Acid Glycoprotein and $\hat{l}\pm\langle sub\rangle 1\langle sub\rangle$ -Antitrypsin Against Ischemia/Reperfusion Injury by Preventing Apoptosis and Inflammation. Circulation, 2000, 102, 1420-1426.	1.6	167
117	Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death and Differentiation, 2006, 13, 2011-2022.	5.0	167
118	Caspase-14 Is Required for Filaggrin Degradation to Natural Moisturizing Factors in the Skin. Journal of Investigative Dermatology, 2011, 131, 2233-2241.	0.3	167
119	Are metacaspases caspases?. Journal of Cell Biology, 2007, 179, 375-380.	2.3	164
120	Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death and Disease, 2014, 5, e1004-e1004.	2.7	164
121	Translation Inhibition in Apoptosis. Journal of Biological Chemistry, 2001, 276, 41620-41628.	1.6	159
122	MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nature Cell Biology, 2017, 19, 1237-1247.	4.6	159
123	Passenger Mutations Confound Interpretation of All Genetically Modified Congenic Mice. Immunity, 2015, 43, 200-209.	6.6	156
124	Gap junctions and the propagation of cell survival and cell death signals. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 459-469.	2.2	155
125	TNF-α receptors simultaneously activate Ca2+ mobilisation and stress kinases in cultured sensory neurones. Neuropharmacology, 2002, 42, 93-106.	2.0	154
126	Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death and Differentiation, 2013, 20, 185-187.	5.0	154

#	Article	IF	Citations
127	The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chemical Society Reviews, 2014, 43, 2628.	18.7	153
128	The 55-kDa Tumor Necrosis Factor Receptor Induces Clustering of Mitochondria through Its Membrane-proximal Region. Journal of Biological Chemistry, 1998, 273, 9673-9680.	1.6	150
129	When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157. Cell Death and Differentiation, 2017, 24, 1100-1110.	5.0	149
130	Disruption of HSP90 Function Reverts Tumor Necrosis Factor-induced Necrosis to Apoptosis. Journal of Biological Chemistry, 2003, 278, 5622-5629.	1.6	146
131	Simultaneous Targeting of IL-1 and IL-18 Is Required for Protection against Inflammatory and Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 282-291.	2.5	145
132	Alternatively activated macrophages and impaired phagocytosis of S.Âaureus in chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 396-403.	2.7	144
133	TUMOUR NECROSIS FACTOR-INDUCED NECROSIS VERSUS ANTI-Fas-INDUCED APOPTOSIS IN L929 CELLS. Cytokine, 1997, 9, 801-808.	1.4	142
134	Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Molecular and Cellular Oncology, 2015, 2, e975093.	0.3	142
135	CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nature Cell Biology, 2016, 18, 291-302.	4.6	139
136	p38 Mitogen-activated Protein Kinase Regulates a Novel, Caspase-independent Pathway for the Mitochondrial Cytochromec Release in Ultraviolet B Radiation-induced Apoptosis. Journal of Biological Chemistry, 2000, 275, 21416-21421.	1.6	138
137	Comparative study of mobile Raman instrumentation for art analysis. Analytica Chimica Acta, 2007, 588, 108-116.	2.6	138
138	Cathepsin B-Mediated Activation of the Proinflammatory Caspase-11. Biochemical and Biophysical Research Communications, 1998, 251, 379-387.	1.0	137
139	An evolutionary perspective on the necroptotic pathway. Trends in Cell Biology, 2016, 26, 721-732.	3.6	137
140	DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunology, 2014, 7, 215-226.	2.7	136
141	Functional characterization of the human tumor necrosis factor receptor p75 in a transfected rat/mouse T cell hybridoma Journal of Experimental Medicine, 1992, 176, 1015-1024.	4.2	135
142	Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain. Neurobiology of Disease, 2011, 43, 68-78.	2.1	135
143	Necroptosis, in vivo detection in experimental disease models. Seminars in Cell and Developmental Biology, 2014, 35, 2-13.	2.3	135
144	TNFR1―and TNFR2―mediated signaling pathways in human kidney are cell typeâ€specific and differentially contribute to renal injury. FASEB Journal, 2005, 19, 1637-1645.	0.2	134

#	Article	IF	CITATIONS
145	Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death and Differentiation, 2012, 19, 1495-1504.	5.0	134
146	Dissociation of TNF-alpha cytotoxic and proinflammatory activities by p55 receptor- and p75 receptor-selective TNF-alpha mutants EMBO Journal, 1994, 13, 843-850.	3.5	132
147	Cleavage of PITSLRE Kinases by ICE/CASP-1 and CPP32/CASP-3 during Apoptosis Induced by Tumor Necrosis Factor. Journal of Biological Chemistry, 1997, 272, 11694-11697.	1.6	132
148	Programmed Necrosis. International Review of Cell and Molecular Biology, 2011, 289, 1-35.	1.6	132
149	DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochemical and Photobiological Sciences, 2011, 10, 670-680.	1.6	131
150	The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. Journal of Clinical Investigation, 2016, 126, 4346-4360.	3.9	130
151	Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L377-L386.	1.3	130
152	Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death and Differentiation, 2002, 9, 981-994.	5.0	127
153	Caspase-1 Activates Nuclear Factor of the κ-Enhancer in B Cells Independently of Its Enzymatic Activity. Journal of Biological Chemistry, 2004, 279, 24785-24793.	1.6	127
154	Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis. FEBS Letters, 1998, 440, 19-24.	1.3	126
155	Redox regulation of TNF signaling. BioFactors, 1999, 10, 145-156.	2.6	126
156	The EMAPII Cytokine Is Released from the Mammalian Multisynthetase Complex after Cleavage of Its p43/proEMAPII Component. Journal of Biological Chemistry, 2001, 276, 23769-23776.	1.6	126
157	Necroptotic cell death in antiâ€cancer therapy. Immunological Reviews, 2017, 280, 207-219.	2.8	126
158	Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death and Disease, 2020, 11, 922.	2.7	126
159	Acute Modulations in Permeability Barrier Function Regulate Epidermal Cornification. American Journal of Pathology, 2008, 172, 86-97.	1.9	124
160	The death-fold superfamily of homotypic interaction motifs. Trends in Biochemical Sciences, 2011, 36, 541-552.	3.7	124
161	Regulation of the expression and processing of caspase-12. Journal of Cell Biology, 2003, 162, 457-467.	2.3	122
162	Targeting Rac1 by the Yersinia Effector Protein YopE Inhibits Caspase-1-mediated Maturation and Release of Interleukin- $1\hat{l}^2$. Journal of Biological Chemistry, 2004, 279, 25134-25142.	1.6	121

#	Article	IF	Citations
163	Raman spectroscopic analysis of the Maya wall paintings in Ek'Balam, Mexico. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2349-2356.	2.0	121
164	Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nature Communications, 2019, 10, 1729.	5.8	121
165	ATP Release from Dying Autophagic Cells and Their Phagocytosis Are Crucial for Inflammasome Activation in Macrophages. PLoS ONE, 2012, 7, e40069.	1.1	121
166	TTRAP, a Novel Protein That Associates with CD40, Tumor Necrosis Factor (TNF) Receptor-75 and TNF Receptor-associated Factors (TRAFs), and That Inhibits Nuclear Factor-l ^o B Activation. Journal of Biological Chemistry, 2000, 275, 18586-18593.	1.6	120
167	SitePredicting the cleavage of proteinase substrates. Trends in Biochemical Sciences, 2009, 34, 319-323.	3.7	119
168	Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. Journal of Immunology, 1995, 154, 2904-13.	0.4	119
169	Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nature Medicine, 2020, 26, 919-931.	15.2	118
170	Severity of doxorubicinâ€induced small intestinal mucositis is regulated by the TLRâ€2 and TLRâ€9 pathways. Journal of Pathology, 2012, 226, 598-608.	2.1	117
171	Yersinia enterocolitica YopP-induced Apoptosis of Macrophages Involves the Apoptotic Signaling Cascade Upstream of Bid. Journal of Biological Chemistry, 2001, 276, 19706-19714.	1.6	115
172	Cell death in the skin. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 549-569.	2.2	115
173	Caspase-12: an overview. Cell Death and Differentiation, 2004, 11, 365-368.	5.0	114
174	Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 1065-1087.	2.2	114
175	BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton. Cell Death and Disease, 2014, 5, e1127-e1127.	2.7	113
176	Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death and Disease, 2015, 6, e1587-e1587.	2.7	112
177	Proteome-wide Identification of HtrA2/Omi Substrates. Journal of Proteome Research, 2007, 6, 1006-1015.	1.8	111
178	Chapter 16 Methods for Distinguishing Apoptotic from Necrotic Cells and Measuring Their Clearance. Methods in Enzymology, 2008, 442, 307-341.	0.4	111
179	Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Communications Biology, 2018, 1, 6.	2.0	111
180	The Nod-Like Receptor Family Member Naip5/Birc1e Restricts <i>Legionella pneumophila</i> Independently of Caspase-1 Activation. Journal of Immunology, 2007, 178, 8022-8027.	0.4	109

#	Article	IF	CITATIONS
181	The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus –derived serine protease–like protein D. Journal of Allergy and Clinical Immunology, 2018, 141, 549-559.e7.	1.5	109
182	Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells, 2020, 9, 1823.	1.8	109
183	Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst, The, 2005, 130, 1204.	1.7	107
184	How do we fit ferroptosis in the family of regulated cell death?. Cell Death and Differentiation, 2017, 24, 1991-1998.	5.0	107
185	Inhibitors Targeting RIPK1/RIPK3: Old and New Drugs. Trends in Pharmacological Sciences, 2020, 41, 209-224.	4.0	106
186	Differential Signaling to Apoptotic and Necrotic Cell Death by Fas-associated Death Domain Protein FADD. Journal of Biological Chemistry, 2004, 279, 7925-7933.	1.6	105
187	Generation and Biological Characterization of Membrane-bound, Uncleavable Murine Tumor Necrosis Factor. Journal of Biological Chemistry, 1995, 270, 18473-18478.	1.6	104
188	TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death and Differentiation, 2011, 18, 1316-1325.	5.0	102
189	Ubiquitin-Mediated Regulation of RIPK1 Kinase Activity Independent of IKK and MK2. Molecular Cell, 2018, 69, 566-580.e5.	4.5	102
190	Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nature Communications, 2022, 13 , .	5.8	100
191	Bcl-2 Family Members as Sentinels of Cellular Integrity and Role of Mitochondrial Intermembrane Space Proteins in Apoptotic Cell Death. Acta Haematologica, 2004, 111, 7-27.	0.7	99
192	An outline of necrosome triggers. Cellular and Molecular Life Sciences, 2016, 73, 2137-2152.	2.4	99
193	Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. Journal of Immunology, 1998, 161, 390-9.	0.4	98
194	Tumor Necrosis Factor-α–Induced Activation of RhoA in Airway Smooth Muscle Cells: Role in the Ca2+ Sensitization of Myosin Light Chain20 Phosphorylation. Molecular Pharmacology, 2003, 63, 714-721.	1.0	97
195	Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 294-301.	2.0	97
196	Boosting Apoptotic Cell Clearance by Colonic Epithelial Cells Attenuates Inflammation InÂVivo. Immunity, 2016, 44, 807-820.	6.6	96
197	clAP1/2 Are Direct E3 Ligases Conjugating Diverse Types of Ubiquitin Chains to Receptor Interacting Proteins Kinases 1 to 4 (RIP1 \hat{a} e"4). PLoS ONE, 2011, 6, e22356.	1.1	91
198	Phosphatidyl serine exposure during apoptosis precedes release of cytochromecand decrease in mitochondrial transmembrane potential. FEBS Letters, 2000, 465, 47-52.	1.3	90

#	Article	IF	CITATIONS
199	In situ analysis of mediaeval wall paintings: a challenge for mobile Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2005, 383, 707-712.	1.9	90
200	Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death and Differentiation, 2006, 13, 166-169.	5.0	90
201	Necrosis is associated with IL-6 production but apoptosis is not. Cellular Signalling, 2006, 18, 328-335.	1.7	90
202	Generation of dendritic cells from bone marrow progenitors using GMâ€CSF, TNF―α , and additional cytokines: antagonistic effects of ILâ€4 and IFN―γ and selective involvement of TNF―α receptorâ€1. Immunology, 1997, 91, 553-559.	2.0	89
203	Inflammatory Caspases: Targets for Novel Therapies. Current Pharmaceutical Design, 2007, 13, 367-385.	0.9	89
204	Creation and X-ray Structure Analysis of the Tumor Necrosis Factor Receptor-1-selective Mutant of a Tumor Necrosis Factor-α Antagonist. Journal of Biological Chemistry, 2008, 283, 998-1007.	1.6	89
205	The emergence of phox-ER stress induced immunogenic apoptosis. Oncolmmunology, 2012, 1, 786-788.	2.1	89
206	Novel Ferroptosis Inhibitors with Improved Potency and ADME Properties. Journal of Medicinal Chemistry, 2016, 59, 2041-2053.	2.9	88
207	Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes. Nature Communications, 2018, 9, 3417.	5.8	87
208	Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor 1±-Induced Necroptosis. Neoplasia, 2011, 13, 971-IN29.	2.3	86
209	NLRP3/Caspase-1–Independent IL-1β Production Mediates Diesel Exhaust Particle-Induced Pulmonary Inflammation. Journal of Immunology, 2011, 187, 3331-3337.	0.4	86
210	A new instrument adapted to in situ Raman analysis of objects of art. Analytical and Bioanalytical Chemistry, 2004, 379, 137-142.	1.9	85
211	Necroptosis Signaling Promotes Inflammation, Airway Remodeling, and Emphysema in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 667-681.	2.5	85
212	Tumor Necrosis Factor- \hat{l}_{\pm} Mediates Both Apoptotic Cell Death and Cell Proliferation in a Human Hematopoietic Cell Line Dependent on Mitotic Activity and Receptor Subtype Expression. Journal of Biological Chemistry, 1999, 274, 9539-9547.	1.6	84
213	Caspase-induced proteolysis of the cyclin-dependent kinase inhibitor p27Kip1 mediates its anti-apoptotic activity. Oncogene, 1999, 18, 4839-4847.	2.6	84
214	Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: Role of tumor necrosis factor. European Journal of Immunology, 1990, 20, 707-710.	1.6	83
215	INCA, a Novel Human Caspase Recruitment Domain Protein That Inhibits Interleukin- $1\hat{l}^2$ Generation. Journal of Biological Chemistry, 2004, 279, 51729-51738.	1.6	83
216	Intersections between Regulated Cell Death and Autophagy. Trends in Cell Biology, 2019, 29, 323-338.	3.6	83

#	Article	IF	Citations
217	Immunogenic Apoptotic Cell Death and Anticancer Immunity. Advances in Experimental Medicine and Biology, 2016, 930, 133-149.	0.8	82
218	Discovery of Novel, Drug-Like Ferroptosis Inhibitors with in Vivo Efficacy. Journal of Medicinal Chemistry, 2018, 61, 10126-10140.	2.9	80
219	A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death and Differentiation, 2002, 9, 301-308.	5.0	79
220	Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget, 2015, 6, 26841-26860.	0.8	79
221	Selective stimulation of either tumor necrosis factor receptor differentially induces pain behavior in vivo and ectopic activity in sensory neurons in vitro. Neuroscience, 2008, 157, 414-423.	1.1	78
222	Punching Holes in Cellular Membranes: Biology and Evolution of Gasdermins. Trends in Cell Biology, 2021, 31, 500-513.	3.6	78
223	Keratinocyte-specific ablation of the NF-κB regulatory protein A20 (TNFAIP3) reveals a role in the control of epidermal homeostasis. Cell Death and Differentiation, 2011, 18, 1845-1853.	5.0	77
224	Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9617-9622.	3.3	77
225	Treatment of PCâ€3 and DU145 prostate cancer cells by prenylflavonoids from hop (<i>Humulus) Tj ETQq1 1 0.1</i>	784314 rg 2.8	BT /Overlock 76
226	Differential activation of nuclear factor- \hat{P} B by tumour necrosis factor receptor subtypes. TNFR1 predominates whereas TNFR2 activates transcription poorly. FEBS Letters, 2002, 515, 119-126.	1.3	75
227	Mobile Spectroscopic Instrumentation in Archaeometry Research. Applied Spectroscopy, 2016, 70, 27-41.	1.2	75
228	Withaferin A: From ayurvedic folk medicine to preclinical anti-cancer drug. Biochemical Pharmacology, 2020, 173, 113602.	2.0	73
229	Casein Kinase-1 Phosphorylates the p75 Tumor Necrosis Factor Receptor and Negatively Regulates Tumor Necrosis Factor Signaling for Apoptosis. Journal of Biological Chemistry, 1995, 270, 23293-23299.	1.6	72
230	Non-destructive analysis of paintings using Fourier transform Raman spectroscopy with fibre optics. Journal of Raman Spectroscopy, 2001, 32, 263-269.	1.2	72
231	Raman spectroscopy in art and archaeology. Journal of Raman Spectroscopy, 2004, 35, 607-609.	1.2	72
232	Necroptosis: A Novel Cell Death Modality and Its Potential Relevance for Critical Care Medicine. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 415-428.	2.5	72
233	The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Letters, 2000, 466, 143-147.	1.3	71
234	Therapeutic Targeting of Connexin Channels: New Views and Challenges. Trends in Molecular Medicine, 2018, 24, 1036-1053.	3.5	71

#	Article	IF	Citations
235	lonizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death and Disease, 2020, 11, 1003.	2.7	71
236	Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. Journal of Experimental Medicine, 2020, 217, .	4.2	71
237	Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling. Nature Cell Biology, 2021, 23, 377-390.	4.6	71
238	Caspase-1 and Caspase-8 Cleave and Inactivate Cellular Parkin. Journal of Biological Chemistry, 2003, 278, 23376-23380.	1.6	70
239	Methodological evolutions of Raman spectroscopy in art and archaeology. Analytical Methods, 2016, 8, 8395-8409.	1.3	70
240	Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death and Disease, 2017, 8, e2904-e2904.	2.7	69
241	Cytokine release syndrome induced by the 145-2C11 anti-CD3 monoclonal antibody in mice: prevention by high doses of methylprednisolone. Journal of Immunology, 1991, 146, 1184-91.	0.4	68
242	Protein synthesis persists during necrotic cell death. Journal of Cell Biology, 2005, 168, 545-551.	2.3	67
243	Hydroxylase Inhibition Abrogates TNF-α–Induced Intestinal Epithelial Damage by Hypoxia-Inducible Factor-1–Dependent Repression of FADD. Journal of Immunology, 2010, 185, 6306-6316.	0.4	67
244	From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death and Differentiation, 2008, 15, 29-38.	5.0	65
245	ADAR1 interaction with Z-RNA promotes editing of endogenous double-stranded RNA and prevents MDA5-dependent immune activation. Cell Reports, 2021, 36, 109500.	2.9	65
246	EVIDENCE THAT PENTOXIFYLLINE REDUCES ANTI-CD3 MONOCLONAL ANTIBODY-INDUCED CYTOKINE RELEASE SYNDROME. Transplantation, 1991, 52, 674-679.	0.5	64
247	Caspases are not localized in mitochondria during life or death. Cell Death and Differentiation, 2002, 9, 1207-1211.	5.0	64
248	Proteome-wide Substrate Analysis Indicates Substrate Exclusion as a Mechanism to Generate Caspase-7 Versus Caspase-3 Specificity. Molecular and Cellular Proteomics, 2009, 8, 2700-2714.	2.5	64
249	Calcium and connexin-based intercellular communication, a deadly catch?. Cell Calcium, 2011, 50, 310-321.	1.1	64
250	Type II tumour necrosis factor-α receptor (TNFR2) activates c-Jun N-terminal kinase (JNK) but not mitogen-activated protein kinase (MAPK) or p38 MAPK pathways. Biochemical Journal, 2001, 359, 525-535.	1.7	63
251	Critical evaluation of a handheld Raman spectrometer with near infrared (785 nm) excitation for field identification of minerals. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 80, 36-40.	2.0	63
252	Activation of caspases in lethal experimental hepatitis and prevention by acute phase proteins. Journal of Immunology, 1999, 163, 5235-41.	0.4	63

#	Article	IF	CITATIONS
253	RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia, 2012, 26, 1020-1029.	3.3	62
254	The role of the IAP E3 ubiquitin ligases in regulating pattern-recognition receptor signalling. Nature Reviews Immunology, 2012, 12, 833-844.	10.6	62
255	A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochemical Society Transactions, 2007, 35, 1508-1511.	1.6	61
256	Caspase deficiency alters the murine gut microbiome. Cell Death and Disease, 2011, 2, e220-e220.	2.7	61
257	Gut Microbiota Affects Sensitivity to Acute DSS-induced Colitis Independently of Host Genotype. Inflammatory Bowel Diseases, 2013, 19, 2560-2567.	0.9	61
258	RIPK1 protects from TNF-α-mediated liver damage during hepatitis. Cell Death and Disease, 2016, 7, e2462-e2462.	2.7	61
259	The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death and Differentiation, 2021, 28, 843-860.	5.0	61
260	MLKL in cancer: more than a necroptosis regulator. Cell Death and Differentiation, 2021, 28, 1757-1772.	5.0	61
261	A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death and Disease, 2019, 10, 692.	2.7	60
262	Targeting ferroptosis protects against experimental (multi)organ dysfunction and death. Nature Communications, 2022, 13, 1046.	5.8	60
263	Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2007, 387, 813-819.	1.9	59
264	A Novel Caspase-2 Complex Containing TRAF2 and RIP1. Journal of Biological Chemistry, 2005, 280, 6923-6932.	1.6	58
265	Tryptic peptide analysis of protein binders in works of art by liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 2010, 658, 156-162.	2.6	58
266	B cell growth modulating and differentiating activity of recombinant human 26-kd protein (BSF-2,) Tj ETQq0 0 0 r	gBT ₅ /Over	logg 10 Tf 50
267	Contribution to the identification of αâ€, β†and εâ€copper phthalocyanine blue pigments in modern artists' paints by Xâ€ray powder diffraction, attenuated total reflectance microâ€fourier transform infrared spectroscopy and microâ€Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 1772-1780.	1.2	57
268	Tumoricidal Activity of Monocyte-Derived Dendritic Cells: Evidence for a Caspase-8-Dependent, Fas-Associated Death Domain-Independent Mechanism. Journal of Immunology, 2001, 167, 3565-3569.	0.4	56
269	Different Pathways Mediate Cytochrome c Release After Photodynamic Therapy with Hypericin. Photochemistry and Photobiology, 2001, 74, 133.	1.3	56
270	Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy. Journal of Morphology, 2003, 258, 336-345.	0.6	56

#	Article	IF	Citations
271	Ultraviolet B radiation-induced apoptosis in human keratinocytes: cytosolic activation of procaspase-8 and the role of Bcl-2. FEBS Letters, 2003, 540, 125-132.	1.3	54
272	On the definition of Raman spectroscopic detection limits for the analysis of biomarkers in solid matrices. Planetary and Space Science, 2012, 62, 48-54.	0.9	54
273	Tauroursodeoxycholic acid inhibits experimental colitis by preventing early intestinal epithelial cell death. Laboratory Investigation, 2014, 94, 1419-1430.	1.7	54
274	<scp><i>GSDME</i></scp> and its role in cancer: From behind the scenes to the front of the stage. International Journal of Cancer, 2021, 148, 2872-2883.	2.3	54
275	Identification of caspases that cleave presenilin-1 and presenilin-2. FEBS Letters, 1999, 445, 149-154.	1.3	53
276	Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nature Communications, 2018, 9, 4846.	5.8	53
277	An Apoptotic Caspase Network Safeguards Cell Death Induction in Pyroptotic Macrophages. Cell Reports, 2020, 32, 107959.	2.9	53
278	In situ investigations of vault paintings in the Antwerp cathedral. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 511-519.	2.0	52
279	Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. Journal of Clinical Investigation, 2018, 128, 3265-3279.	3.9	52
280	Vitamin D3 Induces Caspase-14 Expression in Psoriatic Lesions and Enhances Caspase-14 Processing in Organotypic Skin Cultures. American Journal of Pathology, 2004, 165, 833-841.	1.9	51
281	Caspases leave the beaten track: caspase-mediated activation of NF-κB. Journal of Cell Biology, 2006, 173, 165-171.	2.3	51
282	Diamond-Graphite Relationships in Ultrahigh-pressure Metamorphic Rocks from the Kokchetav Massif, Northern Kazakhstan. Journal of Petrology, 2010, 51, 763-783.	1.1	51
283	The Ripoptosome: Death Decision in the Cytosol. Molecular Cell, 2011, 43, 323-325.	4.5	51
284	Cleavage of caspase family members by granzyme B: a comparative studyin vitro. European Journal of Immunology, 1997, 27, 1296-1299.	1.6	50
285	Induction of apoptosis by TNF receptor 2 in a T-cell hybridoma is FADD dependent and blocked by caspase-8 inhibitors. Journal of Cell Science, 2005, 118, 497-504.	1.2	50
286	Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. Journal of Raman Spectroscopy, 2016, 47, 1429-1443.	1.2	50
287	A real-time fluorometric method for the simultaneous detection of cell death type and rate. Nature Protocols, 2016, 11, 1444-1454.	5.5	50
288	Macrophages regulate the clearance of living cells by calreticulin. Nature Communications, 2018, 9, 4644.	5.8	50

#	Article	IF	CITATIONS
289	Classification of protein binders in artist's paints by matrixâ€assisted laser desorption/ionisation timeâ€ofâ€flight mass spectrometry: an evaluation of principal component analysis (PCA) and soft independent modelling of class analogy (SIMCA). Rapid Communications in Mass Spectrometry, 2011, 25, 1631-1640.	0.7	49
290	Transfer of IP3 through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death and Differentiation, 2012, 19, 947-957.	5.0	49
291	IP3, a small molecule with a powerful message. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1772-1786.	1.9	49
292	RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. Journal of Hepatology, 2017, 66, 1205-1213.	1.8	48
293	Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochemical Journal, 2003, 374, 453-461.	1.7	47
294	Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions. Autophagy, 2014, 10, 1921-1936.	4.3	47
295	Proteolytic cleavage of β-catenin by caspases: an in vitro analysis. FEBS Letters, 1999, 458, 167-170.	1.3	46
296	The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Reports, 2016, 15, 1481-1492.	2.9	46
297	The cAMP-specific Phosphodiesterase PDE4A5 Is Cleaved Downstream of Its SH3 Interaction Domain by Caspase-3. Journal of Biological Chemistry, 2000, 275, 28063-28074.	1.6	45
298	Human tumor necrosis factor mutants with preferential binding to and activity on either the R55 or R75 receptor. FEBS Journal, 1994, 220, 771-779.	0.2	44
299	Cytotoxicity in L929 murine fibrosarcoma cells after triggering of transfected human p75 tumour necrosis factor (TNF) receptor is mediated by endogenous murine TNF. Cytokine, 1995, 7, 463-470.	1.4	44
300	A20 Inhibits NF-κB Activation Independently of Binding to 14-3-3 Proteins. Biochemical and Biophysical Research Communications, 1997, 238, 590-594.	1.0	44
301	Spectroscopic Examination of Two Egyptian Masks: A Combined Method Approach. Analytical Letters, 2000, 33, 3315-3332.	1.0	44
302	Caspase-14 is expressed in the epidermis, the choroid plexus, the retinal pigment epithelium and thymic Hassall's bodies. Cell Death and Differentiation, 2003, 10, 257-259.	5.0	44
303	The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 80, 125-132.	2.0	44
304	Microbes exploit death-induced nutrient release by gut epithelial cells. Nature, 2021, 596, 262-267.	13.7	44
305	Methylprednisolone differentially regulates IL-10 and tumour necrosis factor (TNF) production during murine endotoxaemia. Clinical and Experimental Immunology, 1996, 106, 91-96.	1.1	43
306	Raman spectra of pure biomolecules obtained using a handheld instrument under cold high-altitude conditions. Analytical and Bioanalytical Chemistry, 2010, 397, 2753-2760.	1.9	43

#	Article	IF	Citations
307	Cleavage of transcription factor SP1 by caspases during anti-IgM-induced B-cell apoptosis. FEBS Journal, 1999, 261, 269-274.	0.2	42
308	Type II tumour necrosis factor-α receptor (TNFR2) activates c-Jun N-terminal kinase (JNK) but not mitogen-activated protein kinase (MAPK) or p38 MAPK pathways. Biochemical Journal, 2001, 359, 525.	1.7	42
309	Methods for extracting biochemical information from bacterial Raman spectra: Focus on a group of structurally similar biomolecules—Fatty acids. Analytica Chimica Acta, 2007, 603, 167-175.	2.6	42
310	USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene, 2017, 36, 458-470.	2.6	42
311	Keratinocyte Expression of A20/TNFAIP3 Controls Skin Inflammation Associated with Atopic Dermatitis and Psoriasis. Journal of Investigative Dermatology, 2019, 139, 135-145.	0.3	42
312	SENSITIZATION OF TNF-INDUCED APOPTOSIS WITH POLYAMINE SYNTHESIS INHIBITORS IN DIFFERENT HUMAN AND MURINE TUMOUR CELL LINES. Cytokine, 1998, 10, 423-431.	1.4	41
313	RIPK1 promotes death receptor-independent caspase-8-mediated apoptosis under unresolved ER stress conditions. Cell Death and Disease, 2014, 5, e1555-e1555.	2.7	41
314	Dissociation of TNF-alpha cytotoxic and proinflammatory activities by p55 receptor- and p75 receptor-selective TNF-alpha mutants. EMBO Journal, 1994, 13, 843-50.	3.5	41
315	Signaling to gene activation and cell death by tumor necrosis factor receptors and fas. International Review of Cytology, 2002, 214, 225-272.	6.2	40
316	Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidus metallidurans. Analytica Chimica Acta, 2007, 585, 234-240.	2.6	40
317	Caspase substrates: easily caught in deep waters?. Trends in Biotechnology, 2009, 27, 680-688.	4.9	40
318	Intermediate Domain of Receptor-interacting Protein Kinase 1 (RIPK1) Determines Switch between Necroptosis and RIPK1 Kinase-dependent Apoptosis. Journal of Biological Chemistry, 2012, 287, 14863-14872.	1.6	40
319	Extracellular ATP and P2X7 receptor exert context-specific immunogenic effects after immunogenic cancer cell death. Cell Death and Disease, 2016, 7, e2097-e2097.	2.7	40
320	Fine-tuning nucleophosmin in macrophage differentiation and activation. Blood, 2011, 118, 4694-4704.	0.6	39
321	A combined spectroscopic study on Chinese porcelain containing ruan-cai colours. Analytical Methods, 2014, 6, 387-394.	1.3	39
322	Persistence of anti-donor allohelper T cells after neonatal induction of allotolerance in mice. European Journal of Immunology, 1990, 20, 1647-1653.	1.6	38
323	Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 995-997.	2.2	38
324	Interaction Patches of Procaspase-1 Caspase Recruitment Domains (CARDs) Are Differently Involved in Procaspase-1 Activation and Receptor-interacting Protein 2 (RIP2)-dependent Nuclear Factor ÎB Signaling. Journal of Biological Chemistry, 2011, 286, 35874-35882.	1.6	38

#	Article	IF	CITATIONS
325	Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells. Toxicology and Applied Pharmacology, 2015, 288, 161-178.	1.3	38
326	Functional Characterization of the Prodomain of Interleukin $1\hat{l}^2$ -converting Enzyme. Journal of Biological Chemistry, 1996, 271, 27245-27248.	1.6	37
327	NADPH Oxidases: New Players in TNF-Induced Necrotic Cell Death. Molecular Cell, 2007, 26, 769-771.	4.5	37
328	Degradomics Reveals That Cleavage Specificity Profiles of Caspase-2 and Effector Caspases Are Alike. Journal of Biological Chemistry, 2012, 287, 33983-33995.	1.6	37
329	NIK promotes tissue destruction independently of the alternative NF-κB pathway through TNFR1/RIP1-induced apoptosis. Cell Death and Differentiation, 2015, 22, 2020-2033.	5.0	37
330	Proteolysis of Enteric Cell Villin by Entamoeba histolytica Cysteine Proteinases. Journal of Biological Chemistry, 2003, 278, 22650-22656.	1.6	36
331	Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1137-1146.	2.2	36
332	RIPK1-dependent cell death: a novel target of the Aurora kinase inhibitor Tozasertib (VX-680). Cell Death and Disease, 2018, 9, 211.	2.7	36
333	Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. Cell Death and Differentiation, 2005, 12, 1219-1224.	5.0	35
334	Inflammatory mediators in Escherichia coli-induced mastitis in mice. Comparative Immunology, Microbiology and Infectious Diseases, 2008, 31, 551-565.	0.7	35
335	Caspase-14-Deficient Mice Are More Prone to the Development of Parakeratosis. Journal of Investigative Dermatology, 2013, 133, 742-750.	0.3	35
336	Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends in Cell Biology, 2014, 24, 83-89.	3.6	35
337	A Caspase-activated Factor (CAF) Induces Mitochondrial Membrane Depolarization and Cytochrome c Release by a Nonproteolytic Mechanism. Journal of Experimental Medicine, 1998, 188, 2193-2198.	4.2	34
338	Structure/Function Analysis of p55 Tumor Necrosis Factor Receptor and Fas-associated Death Domain. Journal of Biological Chemistry, 2000, 275, 37596-37603.	1.6	34
339	Lithium Sensitizes Tumor Cells in an NF-κB-independent Way to Caspase Activation and Apoptosis Induced by Tumor Necrosis Factor (TNF). Journal of Biological Chemistry, 2001, 276, 25939-25945.	1.6	34
340	The p55 tumour necrosis factor receptor TNFR1 contains a trans-Golgi network localization signal in the C-terminal region of its cytoplasmic tail. Biochemical Journal, 2002, 366, 15-22.	1.7	34
341	The Pseudomonas aeruginosa Type III Secretion System Has an Exotoxin S/T/Y Independent Pathogenic Role during Acute Lung Infection. PLoS ONE, 2012, 7, e41547.	1.1	34
342	Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death and Disease, 2014, 5, e1366-e1366.	2.7	34

#	Article	IF	Citations
343	A novel RIPK4–IRF6 connection is required to prevent epithelial fusions characteristic for popliteal pterygium syndromes. Cell Death and Differentiation, 2015, 22, 1012-1024.	5.0	34
344	Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death and Differentiation, 2002, 9, 358-361.	5.0	34
345	Differential involvement of caspases in apoptosis of myeloid leukemic cells induced by chemotherapy versus growth factor withdrawal. FEBS Letters, 1997, 409, 207-210.	1.3	33
346	Molecular cloning and identification of murine caspase-8. Journal of Molecular Biology, 1998, 284, 1017-1026.	2.0	33
347	Multi-disciplinary investigation of the tomb of Menna (TT69), Theban Necropolis, Egypt. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 546-552.	2.0	33
348	Non-Classical ProlL-1beta Activation during Mammary Gland Infection Is Pathogen-Dependent but Caspase-1 Independent. PLoS ONE, 2014, 9, e105680.	1.1	33
349	Nondestructive investigation on the 17â€18th centuries Sicilian jewelry collection at the Messina regional museum using mobile Raman equipment. Journal of Raman Spectroscopy, 2015, 46, 989-995.	1.2	33
350	6E11, a highly selective inhibitor of Receptor-Interacting Protein Kinase 1, protects cells against cold hypoxia-reoxygenation injury. Scientific Reports, 2017, 7, 12931.	1.6	33
351	Immunodominant AH1 Antigen-Deficient Necroptotic, but Not Apoptotic, Murine Cancer Cells Induce Antitumor Protection. Journal of Immunology, 2020, 204, 775-787.	0.4	33
352	Raman mapping of coesite inclusions in garnet from the Kokchetav Massif (Northern Kazakhstan). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 68, 1046-1052.	2.0	32
353	Tozasertib Analogues as Inhibitors of Necroptotic Cell Death. Journal of Medicinal Chemistry, 2018, 61, 1895-1920.	2.9	32
354	TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. Journal of Inflammation, 1995, 47, 67-75.	0.1	32
355	Bactericidal/Permeability-Increasing Protein Release in Whole Blood Ex Vivo: Strong Induction by Lipopolysaccharide and Tumor Necrosis Factor-Â. Journal of Infectious Diseases, 1997, 175, 108-117.	1.9	31
356	Micro-Raman analysis of coloured lithographs. Analytical and Bioanalytical Chemistry, 2004, 379, 674-83.	1.9	31
357	Caspase-containing complexes in the regulation of cell death and inflammation. Biological Chemistry, 2006, 387, 1005-16.	1.2	31
358	The Biodata toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 2009, 95, 49-52.	1.8	31
359	Tumor Necrosis Factor Induces Distinct Patterns of Caspase Activation in WEHI-164 Cells Associated with Apoptosis or Necrosis Depending on Cell Cycle Stage. Biochemical and Biophysical Research Communications, 1999, 261, 385-392.	1.0	30
360	Caspaseâ€7 participates in differentiation of cells forming dental hard tissues. Development Growth and Differentiation, 2013, 55, 615-621.	0.6	30

#	Article	IF	CITATIONS
361	Cell surface-expressed phosphatidylserine as therapeutic target to enhance phagocytosis of apoptotic cells. Cell Death and Differentiation, 2013, 20, 49-56.	5.0	30
362	A T cell clone which responds to interkeukin 2 but not to interleukin 4. European Journal of Immunology, 1987, 17, 579-580.	1.6	29
363	Development of a simple, sensitive and specific bioassay for interleukin-1 based on the proliferation of RPMI 1788 cells comparison with other bioassays for IL-1. Journal of Immunological Methods, 1990, 135, 25-32.	0.6	29
364	Enzymatic degradation of tumor necrosis factor by activated human neutrophils: Role of elastase. Life Sciences, 1991, 49, 1879-1886.	2.0	29
365	Mouse mammary gland involution is associated with cytochrome c release and caspase activation. Mechanisms of Development, 2001, 104, 89-98.	1.7	29
366	In vivo imaging of NF-κB activity during Escherichia coli-induced mammary gland infection. Cellular Microbiology, 2008, 10, 1249-1258.	1.1	29
367	Non-destructive in situ study of "Mad Meg―by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 97, 1-6.	1.5	29
368	Chemotaxonomical identification of spores of macrofungi: possibilities of Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2007, 387, 2823-2832.	1.9	28
369	Vitamin C controls neuronal necroptosis under oxidative stress. Redox Biology, 2020, 29, 101408.	3.9	28
370	A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency. Cancer Discovery, 2021, 11, 408-423.	7.7	28
371	In situ Raman spectroscopy for cultural heritage studies. Journal of Raman Spectroscopy, 2021, 52, 2178-2189.	1.2	28
372	Viral manipulation of host cell necroptosis and pyroptosis. Trends in Microbiology, 2022, 30, 593-605.	3. 5	28
373	A ROLE FOR POTASSIUM IN TNF-INDUCED APOPTOSIS AND GENE-INDUCTION IN HUMAN AND RODENT TUMOUR CELL LINES. Cytokine, 2000, 12, 747-750.	1.4	27
374	Identification of Tumor Necrosis Factor (TNF) Amino Acids Crucial for Binding to the Murine p75 TNF Receptor and Construction of Receptor-selective Mutants. Journal of Biological Chemistry, 2001, 276, 37426-37430.	1.6	27
375	Discrimination of metamorphic diamond populations by Raman spectroscopy (Kokchetav, Kazakhstan). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2378-2385.	2.0	27
376	Improvements in the wallpaper industry during the second half of the 19th century: Micro-Raman spectroscopy analysis of pigmented wallpapers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 2357-2363.	2.0	27
377	Necrotic cell death and †necrostatins': now we can control cellular explosion. Trends in Biochemical Sciences, 2008, 33, 352-355.	3.7	27
378	Some ideas on the definition of Raman spectroscopic detection limits for the analysis of art and archaeological objects. Journal of Raman Spectroscopy, 2012, 43, 1545-1550.	1,2	27

#	Article	IF	CITATIONS
379	Survival of Single Positive Thymocytes Depends upon Developmental Control of RIPK1 Kinase Signaling by the IKK Complex Independent of NF-κB. Immunity, 2019, 50, 348-361.e4.	6.6	27
380	RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathologica Communications, 2021, 9, 138.	2.4	27
381	First finding of burkeite in melt inclusions in olivine from sheared lherzolite xenoliths. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 424-427.	2.0	26
382	Microâ€Raman spectroscopy of decorated pottery from the Iberian archaeological site of Puente Tablas (Jaén, Spain, 7th–4th century <scp>B.C.</scp>). Journal of Raman Spectroscopy, 2010, 41, 68-73.	1.2	26
383	The mitochondrial serine protease HtrA2/Omi cleaves RIP1 during apoptosis of Ba/F3 cells induced by growth factor withdrawal. Cell Research, 2010, 20, 421-433.	5.7	26
384	ACTIVATED CASPASE-1 IS NOT A CENTRAL MEDIATOR OF INFLAMMATION IN THE COURSE OF ISCHEMIA-REPERFUSION1. Transplantation, 2001, 71, 778-784.	0.5	25
385	Stimulation of stress-activated but not mitogen-activated protein kinases by tumour necrosis factor receptor subtypes in airway smooth muscle. Biochemical Pharmacology, 2001, 61, 749-759.	2.0	25
386	Heterotrimers Formed by Tumor Necrosis Factors of Different Species or Muteins. Journal of Biological Chemistry, 2001, 276, 27098-27103.	1.6	25
387	Elevated Î"Np63α Levels Facilitate Epidermal and Biliary Oncogenic Transformation. Journal of Investigative Dermatology, 2017, 137, 494-505.	0.3	25
388	Sorafenib inhibits therapeutic induction of necroptosis in acute leukemia cells. Oncotarget, 2017, 8, 68208-68220.	0.8	25
389	Interleukin $1\hat{l}\pm$ acts as an autocrine growth factor for RPMI1788, an Epstein-Barr virus-transformed human B cell line. European Journal of Immunology, 1988, 18, 1027-1031.	1.6	24
390	Tumor Necrosis Factor-Induced Cytotoxicity is Not Related to Rates of Mitochondrial Morphological Abnormalities or Autophagy-Changes that can be Mediated by TNFR-I or TNFR-II. Bioscience Reports, 1998, 18, 329-340.	1.1	24
391	More Than One Way to Die: Methods to Determine TNF-Induced Apoptosis and Necrosis. , 2004, 98, 101-126.		24
392	Raman-based geobarometry of ultrahigh-pressure metamorphic rocks: applications, problems, and perspectives. Analytical and Bioanalytical Chemistry, 2010, 397, 2739-2752.	1.9	24
393	The detection of biomarkers in evaporite matrices using a portable Raman instrument under Alpine conditions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 80, 8-13.	2.0	24
394	The flick of a switch: which death program to choose?. Cell Death and Differentiation, 2012, 19, 1093-1095.	5.0	24
395	Blocking connexin43 hemichannels protects mice against tumour necrosis factor-induced inflammatory shock. Scientific Reports, 2019, 9, 16623.	1.6	24
396	Inhibition of spontaneous neutrophil apoptosis by parabutoporin acts independently of NADPH oxidase inhibition but by lipid raft-dependent stimulation of Akt. Journal of Leukocyte Biology, 2009, 85, 497-507.	1.5	23

#	Article	IF	Citations
397	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	13.7	23
398	Sibiriline, a new small chemical inhibitor of receptorâ€interacting protein kinase 1, prevents immuneâ€dependent hepatitis. FEBS Journal, 2017, 284, 3050-3068.	2.2	23
399	Delivery of Mixed-Lineage Kinase Domain-Like Protein by Vapor Nanobubble Photoporation Induces Necroptotic-Like Cell Death in Tumor Cells. International Journal of Molecular Sciences, 2019, 20, 4254.	1.8	23
400	DIFFERENTIAL ROLE OF CALCIUM IN TUMOUR NECROSIS FACTOR-MEDIATED APOPTOSIS AND SECRETION OF GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR IN A T CELL HYBRIDOMA. Cytokine, 1997, 9, 631-638.	1.4	22
401	Tumour necrosis factor-induced activation of c-Jun N-terminal kinase is sensitive to caspase-dependent modulation while activation of mitogen-activated protein kinase (MAPK) or p38 MAPK is not. Biochemical Journal, 2002, 366, 145-155.	1.7	22
402	Doxorubicin-induced activation of protein kinase D1 through caspase-mediated proteolytic cleavage: identification of two cleavage sites by microsequencing. Cellular Signalling, 2004, 16, 703-709.	1.7	22
403	Apoptosis of hematopoietic cells induced by growth factor withdrawal is associated with caspase-9 mediated cleavage of Raf-1. Oncogene, 2005, 24, 1552-1562.	2.6	22
404	Analysis of South-Asian Shaman paintings at the national museum of Denmark. Journal of Raman Spectroscopy, 2008, 39, 1030-1034.	1.2	22
405	Direct analysis of the central panel of the soâ€called Wyts triptych after Jan van Eyck. Journal of Raman Spectroscopy, 2010, 41, 1500-1509.	1.2	22
406	Aragonite-calcite-dolomite relationships in UHPM polycrystalline carbonate inclusions from the Kokchetav Massif, northern Kazakhstan. European Journal of Mineralogy, 2010, 21, 1301-1311.	0.4	22
407	Feasibility study of the application of micro-Raman imaging as complement to micro-XRF imaging. Applied Physics A: Materials Science and Processing, 2012, 106, 363-376.	1.1	22
408	Mitochondria and NADPH oxidases are the major sources of TNF- $\hat{l}\pm$ /cycloheximide-induced oxidative stress in murine intestinal epithelial MODE-K cells. Cellular Signalling, 2015, 27, 1141-1158.	1.7	22
409	Identification of protein binders in works of art by high-performance liquid chromatography–diode array detector analysis of their tryptic digests. Analytical and Bioanalytical Chemistry, 2009, 393, 1991-1999.	1.9	21
410	Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 157, 146-152.	2.0	21
411	Impact of caspase- $1/11$, -3, -7, or IL- $1\hat{l}^2$ /IL- 18 deficiency on rabies virus-induced macrophage cell death and onset of disease. Cell Death Discovery, 2017, 3, 17012.	2.0	21
412	The somatostatin analogue TT-232 induces apoptosis in A431 cells. Cellular Signalling, 2001, 13, 717-725.	1.7	20
413	Requirement for Tumor Necrosis Factor-Receptor 2 in Alveolar Chemokine Expression Depends upon the Form of the Ligand. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 463-469.	1.4	20
414	Cigarette smoke and the terminal ileum: increased autophagy in murine follicle-associated epithelium and Peyer's patches. Histochemistry and Cell Biology, 2012, 137, 293-301.	0.8	19

#	Article	IF	CITATIONS
415	Beclin 1 functions as a negative modulator of MLKL oligomerisation by integrating into the necrosome complex. Cell Death and Differentiation, 2020, 27, 3065-3081.	5.0	19
416	Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules, 2022, 27, 3970.	1.7	19
417	Dimerization of chimeric erythropoietin /75 kDa Tumour Necrosis Factor (TNF) receptors transduces TNF signals: necessity for the 75 kDa-TNF receptor transmembrane domain. Cytokine, 1995, 7, 701-709.	1.4	18
418	Study of the 19th century porcelain cards with direct Raman analysis. Journal of Raman Spectroscopy, 2008, 39, 1099-1103.	1.2	18
419	MAGUKs, scaffolding proteins at cell junctions, are substrates of different proteases during apoptosis. Cell Death and Disease, 2011, 2, e116-e116.	2.7	18
420	<i>In situ</i> Raman mapping of art objects. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160039.	1.6	18
421	Noninvasive Whole-Body Imaging of Phosphatidylethanolamine as a Cell Death Marker Using ^{99m} Tc-Duramycin During TNF-Induced SIRS. Journal of Nuclear Medicine, 2018, 59, 1140-1145.	2.8	18
422	Distinct mechanisms are involved in tumoristatic and tumoricidal activities of monocyte-derived dendritic cells. Immunology Letters, 2004, 91, 99-101.	1.1	17
423	The caspase-generated fragments of PKR cooperate to activate full-length PKR and inhibit translation. Cell Death and Differentiation, 2007, 14, 1050-1059.	5.0	17
424	Caspase-7 in molar tooth development. Archives of Oral Biology, 2012, 57, 1474-1481.	0.8	17
425	An Inactivating Caspase-11 Passenger Mutation Muddles Sepsis Research. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 120-121.	2.5	17
426	NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis, 2016, 252, 166-174.	0.4	17
427	Nanoscopic X-ray fluorescence imaging and quantification of intracellular key-elements in cryofrozen Friedreich's ataxia fibroblasts. PLoS ONE, 2018, 13, e0190495.	1.1	17
428	Caspase-3 probes for PET imaging of apoptotic tumor response to anticancer therapy. Organic and Biomolecular Chemistry, 2019, 17, 4801-4824.	1.5	17
429	Identification of MYC as an antinecroptotic protein that stifles RIPK1–RIPK3 complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19982-19993.	3.3	17
430	XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting innate immune responses of Paneth and dendritic cells. Science Immunology, 2021, 6, eabf7235.	5.6	17
431	TNF/TNF-R1 pathway is involved in doxorubicin-induced acute sterile inflammation. Cell Death and Disease, 2013, 4, e961-e961.	2.7	16
432	Regulation of RIPK1's cell death function by phosphorylation. Cell Cycle, 2016, 15, 5-6.	1.3	16

#	Article	IF	Citations
433	Antioxidant and food additive BHA prevents TNF cytotoxicity by acting as a direct RIPK1 inhibitor. Cell Death and Disease, 2021, 12, 699.	2.7	16
434	Tumor necrosis factor receptor 2-signaling in CD133-expressing cells in renal clear cell carcinoma. Oncotarget, 2016, 7, 24111-24124.	0.8	16
435	Temperature Non-Uniformities During Rapid Thermal Processing Of Patterned Wafers. Proceedings of SPIE, 1990, , .	0.8	15
436	Temperature Control and Temperature Uniformity During Rapid Thermal Processing. Materials Research Society Symposia Proceedings, 1991, 224, 185.	0.1	15
437	Discrimination of zeolites and beryllium containing silicates using portable Raman spectroscometric equipment with near-infrared excitation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 86, 341-346.	2.0	15
438	Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via crossâ€flow nanofiltrated amino acids. Rapid Communications in Mass Spectrometry, 2013, 27, 2039-2050.	0.7	15
439	The adjuvantâ€like activity of <scp>s</scp> taphylococcal enterotoxin <scp>B</scp> in a murine asthma model is independent of <scp>IL</scp> â€l <scp>R</scp> signaling. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 446-453.	2.7	15
440	The skin microbiome of caspaseâ€14â€deficient mice shows mild dysbiosis. Experimental Dermatology, 2014, 23, 561-567.	1.4	15
441	New insight on the underdrawing of 16th Flemish-Portuguese easel paintings by combined surface analysis and microanalytical techniques. Micron, 2016, 85, 15-25.	1.1	15
442	The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF. Journal of Experimental Medicine, 2019, 216, 2010-2023.	4.2	15
443	Viral dosing of influenza A infection reveals involvement of RIPK3 and FADD, but not MLKL. Cell Death and Disease, 2021, 12, 471.	2.7	15
444	The Soluble Guanylate Cyclase Activator BAY 58-2667 Protects against Morbidity and Mortality in Endotoxic Shock by Recoupling Organ Systems. PLoS ONE, 2013, 8, e72155.	1,1	15
445	8 Tumour necrosis factor induced autophagy and mitochondrial morphological abnormalities are mediated by TNFR-I and/or TNFR-II and do not invariably lead to cell death. Biochemical Society Transactions, 1998, 26, S314-S314.	1.6	14
446	Inhibition of Nuclear Factor-PB by a Nitro-Derivative of Flurbiprofen: A Possible Mechanism for Antiinflammatory and Antiproliferative Effect. Antioxidants and Redox Signaling, 2003, 5, 229-235.	2.5	14
447	Evaluation of portable Raman instruments with 532 and 785â€nm excitation for identification of zeolites and beryllium containing silicates. Journal of Raman Spectroscopy, 2015, 46, 927-932.	1.2	14
448	Necroptosis: (Last) Message in a Bubble. Immunity, 2017, 47, 1-3.	6.6	14
449	Keratinocyte-Specific Ablation of RIPK4 Allows Epidermal Cornification but Impairs Skin Barrier Formation. Journal of Investigative Dermatology, 2018, 138, 1268-1278.	0.3	14
450	<i>Bacillus anthracis</i> induces NLRP3 inflammasome activation and caspase-8–mediated apoptosis of macrophages to promote lethal anthrax. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14

#	Article	IF	Citations
451	In situemissivity measurements to probe the phase transformations during rapid thermal processing Co silicidation. Applied Physics Letters, 1992, 61, 2296-2298.	1.5	13
452	Use of the Yeast Three-Hybrid System as a Tool to Study Caspases. Analytical Biochemistry, 1998, 263, 62-66.	1.1	13
453	Head Involution Defective (Hid)-triggered Apoptosis Requires Caspase-8 but Not FADD (Fas-associated) Tj ETQq1 35097-35104.	1 0.78431 1.6	4 rgBT /Ove 13
454	Dual Face Apoptotic Machinery: From Initiator of Apoptosis to Guardian of Necroptosis. Immunity, 2011, 35, 493-495.	6.6	13
455	Escherichia coli induces bovine neutrophil cell death independent from caspase-3/-7/-1, but with phosphatidylserine exposure prior to membrane rupture. Veterinary Immunology and Immunopathology, 2013, 153, 45-56.	0.5	13
456	N-glycosylation of mouse TRAIL-R restrains TRAIL-induced apoptosis. Cell Death and Disease, 2018, 9, 494.	2.7	13
457	Modulation by caspases of tumor necrosis factor-stimulated c-Jun N-terminal kinase activation but not nuclear factor-l ^o B signaling. Biochemical Pharmacology, 2003, 65, 91-99.	2.0	12
458	Caspase-mediated cleavage of the U snRNP-associated Sm-F protein during apoptosis. Cell Death and Differentiation, 2003, 10, 570-579.	5.0	12
459	Inflammatory Caspases: Targets for Novel Therapies. Current Pharmaceutical Design, 2007, 13, 365-383.	0.9	12
460	RIP1's function in NF- $\hat{1}^{\Omega}$ B activation: from master actor to onlooker. Cell Death and Differentiation, 2010, 17, 379-380.	5.0	12
461	Shining light on cell death processes – a novel biosensor for necroptosis, a newly described cell death program. Biotechnology Journal, 2014, 9, 224-240.	1.8	12
462	An analytical Raman spectroscopic study of an important english oil painting of the 18th Century. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 598-602.	2.0	12
463	A siRNA screen reveals the prosurvival effect of protein kinase A activation in conditions of unresolved endoplasmic reticulum stress. Cell Death and Differentiation, 2016, 23, 1670-1680.	5.0	12
464	RIPK1 protects hepatocytes from death in Fas-induced hepatitis. Scientific Reports, 2017, 7, 9205.	1.6	12
465	RIPK4 activity in keratinocytes is controlled by the SCFÎ ² -TrCP ubiquitin ligase to maintain cortical actin organization. Cellular and Molecular Life Sciences, 2018, 75, 2827-2841.	2.4	12
466	Plasma membrane perforation by GSDME during apoptosis-driven secondary necrosis. Cellular and Molecular Life Sciences, 2022, 79, 19.	2.4	12
467	The \hat{I}^3 subunit of the rod photoreceptor cGMP phosphodiesterase can modulate the proteolysis of two cGMP binding cGMP-specific phosphodiesterases (PDE6 and PDE5) by caspase-3. Cellular Signalling, 2001, 13, 735-741.	1.7	11
468	Interaction of caspase-3 with the cyclic GMP binding cyclic GMP specific phosphodiesterase (PDE5a1). FEBS Journal, 2003, 270, 962-970.	0.2	11

#	Article	IF	Citations
469	Development of a dedicated peptide tandem mass spectral library for conservation science. Analytica Chimica Acta, 2012, 728, 39-48.	2.6	11
470	Generation of a new Gateway-compatible inducible lentiviral vector platform allowing easy derivation of co-transduced cells. BioTechniques, 2016, 60, 252-259.	0.8	11
471	Mouse Strain-Dependent Difference Toward the Staphylococcus aureus Allergen Serine Protease-Like Protein D Reveals a Novel Regulator of IL-33. Frontiers in Immunology, 2020, 11, 582044.	2.2	11
472	A Bcl-2 transgene expressed in hepatocytes does not protect mice from fulminant liver destruction induced by Fas ligand. Cytokine, 2003, 22, 62-70.	1.4	10
473	Monitoring the Presence of Humic Substances in Wool and Silk by the Use of Nondestructive Fluorescence Spectroscopy: Quality Control for 14C Dating of Wool and Silk. Radiocarbon, 2011, 53, 429-442.	0.8	10
474	First findings of monocrystalline aragonite inclusions in garnet from diamond-grade UHPM rocks (Kokchetav Massif, Northern Kazakhstan). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 80, 21-26.	2.0	10
475	Filaggrin Degradation by Caspase-14 Is Required for UVB Photoprotection but Does Not Influence Allergic Sensitization in a Mouse Model of Atopic Dermatitis. Journal of Investigative Dermatology, 2012, 132, 2857-2860.	0.3	10
476	Impact of myeloid RIPK1 gene deletion on atherogenesis in ApoE-deficient mice. Atherosclerosis, 2021, 322, 51-60.	0.4	10
477	Chapter 14 Pigment identification in illuminated manuscripts. Comprehensive Analytical Chemistry, 2004, , 635-662.	0.7	9
478	Introducing students to Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2006, 385, 209-211.	1.9	9
479	Evaluation of a spectral searching algorithm for the comparison of Raman band positions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 80, 27-31.	2.0	9
480	Comparative study of the differential cell death protecting effect of various ROS scavengers. Biological Chemistry, 2019, 400, 149-160.	1.2	9
481	Ceramic Production in the Kur River Basin (Fars, Iran) During the Middle to Late Second Millennium <scp>bce</scp> : A Geochemical and Technological Characterization. Archaeometry, 2019, 61, 556-573.	0.6	9
482	Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis. IScience, 2021, 24, 103074.	1.9	9
483	Gene cloning and structure - function relationship of cytokines such as TNF and interleukins. Immunology Letters, 1987, 16, 219-226.	1.1	8
484	Caspase-mediated cleavage of the exosome subunit PM/Scl-75 during apoptosis. Arthritis Research and Therapy, 2007, 9, R12.	1.6	8
485	Mitotic catastrophe as a prestage to necrosis in mouse liver cells treated with <i>Helicobacter pullorum</i> sonicates. Journal of Morphology, 2009, 270, 921-928.	0.6	8
486	Anti-inflammatory activity of the sesquiterpene lactone diacethylpiptocarphol in dextransulfate sodium-induced colitis in mice. Journal of Ethnopharmacology, 2019, 245, 112186.	2.0	8

#	Article	IF	CITATIONS
487	Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
488	GAL4 Is a Substrate for Caspases: Implications for Two-Hybrid Screening and Other GAL4-Based Assays. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 1, 158-161.	1.7	7
489	Development of a nanofiltration method for bone collagen 14C AMS dating. Nuclear Instruments & Methods in Physics Research B, 2013, 294, 233-239.	0.6	7
490	TL1A regulates adipose-resident innate lymphoid immune responses and enables diet-induced obesity in mice. International Journal of Obesity, 2020, 44, 1062-1074.	1.6	7
491	Response of murine cell lines to an IL-1/IL-2-induced factor in a rat/mouse T hybridoma (PC60): differential induction of cytokines by human IL-1 alpha and IL-1 beta and partial amino acid sequence of rat GM-CSF. Lymphokine Research, 1990, 9, 381-9.	0.7	7
492	Functional requirement of the two TNF receptors for induction of apoptosis in PC60 cells and the role of mitochondria in TNF-induced cytotoxicity. Circulatory Shock, 1994, 44, 196-200.	0.6	7
493	In Vivo Immunosuppression Induced by a Weakly Mitogenic Antibody to Mouse CD3: Evidence That Induction of Long-Lasting in Vivo Unresponsiveness Requires TcR Signaling. Cellular Immunology, 1994, 157, 239-248.	1.4	6
494	Raman spectroscopic monitoring of Lactarius latex. Phytochemistry, 2006, 67, 2580-2589.	1.4	6
495	Reconstitution of protection against Aspergillus infection in chronic granulomatous disease (CGD). Blood, 2009, 114, 3497-3497.	0.6	6
496	Expression of Calciumâ€Sensing Receptor in Quail Granulosa Explants: A Key to Survival During Folliculogenesis. Anatomical Record, 2010, 293, 890-899.	0.8	6
497	Mobile Raman spectroscopy in astrobiology research. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20140202.	1.6	6
498	Non-apoptotic role for caspase-7 in hair follicles and the surrounding tissue. Journal of Molecular Histology, 2015, 46, 443-455.	1.0	6
499	Heme Oxygenase Activity and Heme Binding in a Neonatal Mouse Model. Neonatology, 2017, 112, 376-383.	0.9	6
500	Developing Macro-Raman Mapping as a Tool for Studying the Pigment Distribution of Art Objects. Analytical Chemistry, 2021, 93, 15390-15400.	3.2	6
501	Association of Cell Death Markers With Tumor Immune Cell Infiltrates After Chemo-Radiation in Cervical Cancer. Frontiers in Oncology, 0, 12, .	1.3	6
502	Recombinant interleukin 2 induces immunoglobulin secretion in Staphylococcus aureus cowan strain I activated human B-cells. Immunology Letters, 1985, 11, 101-105.	1.1	5
503	Archaeological investigations (archaeometry). Physical Sciences Reviews, 2018, 3, .	0.8	5
504	Nanoscopic X-ray imaging and quantification of the iron cellular architecture within single fibroblasts of Friedreich's ataxia patients. Journal of Synchrotron Radiation, 2020, 27, 185-198.	1.0	5

#	Article	IF	CITATIONS
505	Plasma membrane permeabilization following cell death: many ways to dye!. Cell Death Discovery, 2021, 7, 183.	2.0	5
506	Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE, 2015, 10, e0140924.	1,1	5
507	Interleukin-6: Biological Function and Regulation of the Gene Expression in Vitro and in Vivo. , 1989 , , $185-190$.		4
508	In situ and microâ€Raman spectroscopy for the identification of natural Sicilian zeolites. Journal of Raman Spectroscopy, 2022, 53, 525-539.	1.2	4
509	Apoptotic Pathways and Their Regulation. , 2005, , 1-29.		3
510	Different Pathways Mediate Cytochrome c Release After Photodynamic Therapy with Hypericin. Photochemistry and Photobiology, 2007, 74, 133-142.	1.3	3
511	Use of Dendrograms of Slice Spectra as a New Graphical Tool for the Interpretation of Two-Dimensional Correlation Spectra. Applied Spectroscopy, 2009, 63, 73-80.	1.2	3
512	Cell Death in the Skin., 0,, 323-332.		3
513	Methods to Study and Distinguish Necroptosis. , 2014, , 335-361.		3
514	Two-step anneals to avoid bridging during Co silicidation. Applied Surface Science, 1993, 73, 162-166.	3.1	2
515	Authors' reply:. American Journal of Kidney Diseases, 2000, 36, 665-668.	2.1	2
516	Necrosis: Molecular Mechanisms and Physiological Roles. , 2009, , 599-633.		2
517	Molecular Pathways of Different Types of Cell Death: Many Roads to Death. , 2009, , 3-31.		2
518	Contribution of ER Stress to Immunogenic Cancer Cell Death. , 2012, , 413-428.		2
519	Caspaseâ€14 overexpression in hairless mice is not involved in utricle formation. Experimental Dermatology, 2013, 22, 484-486.	1.4	2
520	Phagocytosis Assay to Measure Uptake of Necroptotic Cancer Cells by BMDCs. Bio-protocol, 2016, 6, .	0.2	2
521	IL-4 acts synergistically on the IL-2 response of an autoreactive T-cell clone; synergism correlates with increased intracellular IL-2, but not with a modified IL-2 receptor expression. Cellular Immunology, 1990, 130, 79-91.	1.4	1
522	MLKL Reveals Its Friendly Face: A Role in Nerve Regeneration. Molecular Cell, 2018, 72, 397-399.	4.5	1

#	Article	IF	CITATIONS
523	Caspase-12. , 2013, , 2274-2280.		1
524	Reduced protection of RIPK3-deficient mice against influenza by matrix protein 2 ectodomain targeted active and passive vaccination strategies. Cell Death and Disease, 2022, 13, 280.	2.7	1
525	MLKL deficiency in BrafV600EPtenâ [^] /lâ [^] melanoma model results in a modest delay of nevi development and reduced lymph node dissemination in male mice. Cell Death and Disease, 2022, 13, 347.	2.7	1
526	MODULATION OF THE RELEASE OF CYTOKINES AND REDUCTION OF THE SHOCK SYNDROME INDUCED BY ANTI-CD3 MONOCLONAL ANTIBODY IN MICE BY INTERLEUKIN-10. Transplantation, 1994, 57, 1436-1439.	0.5	1
527	Evaluation of a vertical tube concept for RTP. Materials Research Society Symposia Proceedings, 1993, 303, 165.	0.1	0
528	Two Pathways of Tumor Necrosis Factor Signal Transduction: In vitro and in vivo Implications. , 1993 , , $58-65$.		0
529	Role of Reactive Oxygen Species in Tumor Necrosis Factor Toxicity. , 2000, , 245-264.		0
530	Raman spectroscopic applications in art and archaeology. , 0, , .		0
531	The Use of Proteomics to Identify and Characterize Cell Death Proteins. , 2005, , 403-434.		0
532	Necrotic cell death, a controlled way of cellular explosion. , 2008, , 189-190.		0
533	Caspase-3 and Caspase-7. , 2013, , 2256-2265.		0
534	Necroptosis: A Novel Way of Regulated Necrosis with Large Pathophysiological Implications. , 2014, , 153-161.		0
535	Walter Fiers (1931–2019). Cell, 2019, 179, 1241-1243.	13.5	0
536	Role of the Kinase-Dependent Functions of RIPK1 in the Pathogenesis of COPD. , 2020, , .		0
537	Inhibiting RIPK1 Kinase Activity Is Protective in Experimental Models of COPD., 2022,,.		0