Eugenio Coccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5587524/publications.pdf Version: 2024-02-01

		61687	23173
122	14,639	45	116
papers	citations	h-index	g-index
100	100	100	10716
123	123	123	10716
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Lunar Gravitational-wave Antenna. Astrophysical Journal, 2021, 910, 1.	1.6	41
2	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
3	Performance of the Multigap Resistive Plate Chambers of the Extreme Energy Events Project. Journal of Instrumentation, 2019, 14, C05022-C05022.	0.5	3
4	New Eco-gas mixtures for the Extreme Energy Events MRPCs: results and plans. Journal of Instrumentation, 2019, 14, C08008-C08008.	0.5	4
5	First results from the upgrade of the Extreme Energy Events experiment. Journal of Instrumentation, 2019, 14, C08005-C08005.	0.5	3
6	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
7	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
8	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
9	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
10	The Extreme Energy Events experiment: an overview of the telescopes performance Journal of Instrumentation, 2018, 13, P08026-P08026.	0.5	20
11	Gravitational Physics: From Quantum to Waves. , 2018, , 357-488.		0
12	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
13	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
14	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
15	Recent results and performance of the multi-gap resistive plate chambers network for the EEE Project. Journal of Instrumentation, 2016, 11, C11005-C11005.	0.5	8
16	The EEE Project: a sparse array of telescopes for the measurement of cosmic ray muons. Journal of Instrumentation, 2016, 11, C12056-C12056.	0.5	6
17	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
18	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269

#	Article	IF	CITATIONS
19	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
20	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
21	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
22	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
23	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
24	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
25	Dark matter searches using gravitational wave bar detectors: Quark nuggets and newtorites. Astroparticle Physics, 2016, 78, 52-64.	1.9	6
26	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
27	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
28	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
29	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
30	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
31	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
32	Microseismic studies of an underground site for a new interferometric gravitational wave detector. Classical and Quantum Gravity, 2014, 31, 105016.	1.5	28
33	A multigap resistive plate chamber array for the Extreme Energy Events project. Journal of Instrumentation, 2014, 9, C10024-C10024.	0.5	8
34	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
35	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
36	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42

#	Article	IF	CITATIONS
37	MEASUREMENT OF THE THERMAL EXPANSION COEFFICIENT OF AN Al - Mg ALLOY AT ULTRA-LOW TEMPERATURES. International Journal of Modern Physics B, 2013, 27, 1350119.	1.0	4
38	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
39	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
40	UNDERGROUND LABORATORIES AND THEIR PHYSICS REACH. International Journal of Modern Physics A, 2012, 27, 1230008.	0.5	0
41	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
42	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
43	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355
44	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
45	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
46	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
47	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
48	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
49	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
50	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
51	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
52	Underground laboratories: Cosmic silence, loud science. Journal of Physics: Conference Series, 2010, 203, 012023.	0.3	8
53	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
54	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33. 75-80.	1.9	10

#	Article	IF	CITATIONS
55	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
56	Automatic Alignment for the first science run of the Virgo interferometer. Astroparticle Physics, 2010, 33, 131-139.	1.9	11
57	Uranium groundwater anomalies and L'Aquila earthquake, 6th April 2009 (Italy). Journal of Environmental Radioactivity, 2010, 101, 45-50.	0.9	38
58	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
59	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
60	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
61	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 2010, 27, 173001.	1.5	956
62	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
63	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
64	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
65	Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1801-1806.	0.9	7
66	Detection of high energy cosmic rays with the resonant gravitational wave detectors NAUTILUS and EXPLORER. Astroparticle Physics, 2008, 30, 200-208.	1.9	16
67	Lock acquisition of the Virgo gravitational wave detector. Astroparticle Physics, 2008, 30, 29-38.	1.9	16
68	All-sky incoherent search for periodic signals with Explorer 2005 data. Classical and Quantum Gravity, 2008, 25, 114028.	1.5	4
69	EXPLORER and NAUTILUS gravitational wave detectors: a status report. Classical and Quantum Gravity, 2008, 25, 114048.	1.5	6
70	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
71	A cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo. Classical and Quantum Gravity, 2008, 25, 114046.	1.5	0
72	Search for gravitational waves associated with GRB 050915a using the Virgo detector. Classical and Quantum Gravity, 2008, 25, 225001.	1.5	28

#	Article	IF	CITATIONS
73	Status of Virgo. Classical and Quantum Gravity, 2008, 25, 114045.	1.5	148
74	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
75	All-sky search of NAUTILUS data. Classical and Quantum Gravity, 2008, 25, 184012.	1.5	10
76	Virgo status. Classical and Quantum Gravity, 2008, 25, 184001.	1.5	116
77	Noise studies during the first Virgo science run and after. Classical and Quantum Gravity, 2008, 25, 184003.	1.5	8
78	TAUP 2005: Proceedings of the Ninth International Conference on Topics in Astroparticle and Underground Physics. Journal of Physics: Conference Series, 2006, 39, .	0.3	0
79	Acoustic detection of high-energy electrons in a superconducting niobium resonant bar. Europhysics Letters, 2006, 76, 987-993.	0.7	8
80	All-sky search of EXPLORER data: search for coincidences. Classical and Quantum Gravity, 2006, 23, S687-S692.	1.5	1
81	Status report on the EXPLORER and NAUTILUS detectors and the present science run. Classical and Quantum Gravity, 2006, 23, S57-S62.	1.5	24
82	The 2003 run of the EXPLORER–NAUTILUS gravitational wave experiment. Classical and Quantum Gravity, 2006, 23, S169-S178.	1.5	10
83	Particle acoustic detection in gravitational wave aluminum resonant antennas. Astroparticle Physics, 2005, 24, 65-74.	1.9	13
84	The Gran Sasso National Laboratory. Nuclear Physics, Section B, Proceedings Supplements, 2005, 139, 3-6.	0.5	3
85	An all-sky search of EXPLORER data. Classical and Quantum Gravity, 2005, 22, S1243-S1254.	1.5	10
86	RAP — ACOUSTIC DETECTION OF PARTICLES: FIRST RESULTS AT 4.2 K. International Journal of Modern Physics A, 2005, 20, 7054-7056.	0.5	1
87	The last universal physicist. Physics World, 2005, 18, 47-47.	0.0	1
88	Cooling down MiniGRAIL to milli-Kelvin temperatures. Classical and Quantum Gravity, 2004, 21, S465-S471.	1.5	16
89	Searching for counterpart of Â-ray bursts with resonant gravitational wave detectors. Classical and Quantum Gravity, 2004, 21, S759-S764.	1.5	7
90	RAP: thermoacoustic detection at the DAÂNE beam test facility. Classical and Quantum Gravity, 2004, 21, S1197-S1201.	1.5	5

#	Article	lF	CITATIONS
91	Possible sources of gravitational wave bursts detectable today. Physical Review D, 2004, 70, .	1.6	27
92	All-sky upper limit for gravitational radiation from spinning neutron stars. Classical and Quantum Gravity, 2003, 20, S665-S676.	1.5	17
93	Comments on the 2001 run of the EXPLORER/NAUTILUS gravitational wave experiment. Classical and Quantum Gravity, 2003, 20, S785-S788.	1.5	11
94	Acoustic resonance widening in GW detectors: detailed modelling of the dissipation processes. Classical and Quantum Gravity, 2003, 20, 949-968.	1.5	0
95	Resonant-mass detectors of gravitational waves in the short- and medium-term future. Classical and Quantum Gravity, 2003, 20, S135-S142.	1.5	3
96	Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001. Classical and Quantum Gravity, 2002, 19, 5449-5463.	1.5	51
97	Search for gravitational wave bursts by the network of resonant detectors. Classical and Quantum Gravity, 2002, 19, 1367-1375.	1.5	9
98	The next science run of the gravitational wave detector NAUTILUS. Classical and Quantum Gravity, 2002, 19, 1911-1917.	1.5	8
99	The EXPLORER gravitational wave antenna: recent improvements and performances. Classical and Quantum Gravity, 2002, 19, 1905-1910.	1.5	7
100	Anomalous signals due to cosmic rays observed by the bar gravitational wave detector NAUTILUS. Classical and Quantum Gravity, 2002, 19, 1897-1903.	1.5	3
101	Study of coincidences between resonant gravitational wave detectors. Classical and Quantum Gravity, 2001, 18, 243-251.	1.5	22
102	Cryogenic gravitational wave detectors. Physica B: Condensed Matter, 2000, 280, 525-531.	1.3	4
103	New technique to measure the mechanical quality factor of metals using spherical samples. Physica B: Condensed Matter, 2000, 280, 535-536.	1.3	5
104	Final isolation stage for a spherical gravitational wave antenna. Review of Scientific Instruments, 1999, 70, 1553-1560.	0.6	4
105	Stochastic background detection with gravitational-wave resonant detectors. Classical and Quantum Gravity, 1997, 14, 1487-1490.	1.5	1
106	The ultracryogenic gravitational wave detector NAUTILUS. European Physical Journal D, 1996, 46, 2907-2908.	0.4	0
107	Testing theories of gravity with a spherical gravitational wave detector. Classical and Quantum Gravity, 1996, 13, 2865-2873.	1.5	49
108	Proposed gravitational wave observatory based on solid elastic spheres. Physical Review D, 1995, 52, 3735-3738.	1.6	59

#	Article	IF	CITATIONS
109	Cryogenic aspects of cooling large masses to millikelvin temperatures: Application to a 100 ton 10 mKspherical gravitational wave detector. Cryogenics, 1994, 34, 9-16.	0.9	18
110	Smooth heat switch below 1 K. Cryogenics, 1993, 33, 228-229.	0.9	0
111	Upper limit for nuclearite flux from the Rome gravitational wave resonant detectors. Physical Review D, 1993, 47, 4770-4773.	1.6	23
112	Long-term operation of the Rome "Explorer" cryogenic gravitational wave detector. Physical Review D, 1993, 47, 362-375.	1.6	130
113	Suspension and thermal link of an ultralow temperature gravitational wave antenna. Review of Scientific Instruments, 1992, 63, 5432-5434.	0.6	6
114	Noise behaviour of the Explorer gravitational wave antenna during λ transition to the superfluid phase. Cryogenics, 1992, 32, 668-670.	0.9	8
115	Numerical model for cooling a gravitational wave detector below 1 K. Cryogenics, 1991, 31, 147-152.	0.9	6
116	3He/4He mixing chamber for an ultralow temperature gravitational wave antenna. Cryogenics, 1991, 31, 712-714.	0.9	5
117	First Cooling Below 0.1 K of the New Gravitational-Wave Antenna "Nautilus―of the Rome Group. Europhysics Letters, 1991, 16, 231-235.	0.7	64
118	Data Recordered by the Rome Room Temperature Gravitational Wave Antenna, during the Supernova SN 1987 <i>a</i> in the Large Magellanic Cloud. Europhysics Letters, 1987, 3, 1325-1330.	0.7	51
119	Cryogenic system of the Rome group gravitational wave experiment. Cryogenics, 1985, 25, 234-237.	0.9	9
120	Nodal point supported gravitationalâ€wave antennas. Review of Scientific Instruments, 1984, 55, 1980-1981.	0.6	8
121	Thermal and superconducting properties of an aluminium alloy for gravitational wave antennae below 1K. Journal of Physics E: Scientific Instruments, 1983, 16, 695-699.	0.7	33
122	Mechanical filter for the suspension of gravitational wave antennas. Review of Scientific Instruments, 1982, 53, 148-153.	0.6	20