
Frederik De Smet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5587404/publications.pdf Version: 2024-02-01

FDEDEDIK DE SMET

#	Article	IF	CITATIONS
1	VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nature Genetics, 2003, 34, 383-394.	9.4	794
2	Gene prioritization through genomic data fusion. Nature Biotechnology, 2006, 24, 537-544.	9.4	787
3	Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization. Cell, 2009, 136, 839-851.	13.5	727
4	The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature, 2004, 432, 179-186.	13.7	486
5	Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 2011, 7, 285-295.	3.9	450
6	Mechanisms of Vessel Branching. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 639-649.	1.1	328
7	VEGF: A modifier of the del22q11 (DiGeorge) syndrome?. Nature Medicine, 2003, 9, 173-182.	15.2	288
8	Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nature Neuroscience, 2021, 24, 595-610.	7.1	288
9	FGF-dependent metabolic control of vascular development. Nature, 2017, 545, 224-228.	13.7	256
10	An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. Cancer Cell, 2020, 37, 21-36.e13.	7.7	253
11	Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nature Reviews Clinical Oncology, 2009, 6, 315-326.	12.5	195
12	Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nature Communications, 2021, 12, 4117.	5.8	170
13	Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis. Cell Metabolism, 2020, 31, 862-877.e14.	7.2	169
14	Inhibition of Tumor Angiogenesis and Growth by a Small-Molecule Multi-FGF Receptor Blocker with Allosteric Properties. Cancer Cell, 2013, 23, 477-488.	7.7	138
15	Molecular Mechanism of SSR128129E, an Extracellularly Acting, Small-Molecule, Allosteric Inhibitor of FGF Receptor Signaling. Cancer Cell, 2013, 23, 489-501.	7.7	125
16	Role of Delta-like-4/Notch in the Formation and Wiring of the Lymphatic Network in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1695-1702.	1.1	118
17	Role of neural guidance signals in blood vessel navigation. Cardiovascular Research, 2005, 65, 629-638.	1.8	85
18	Allosteric targeting of receptor tyrosine kinases. Nature Biotechnology, 2014, 32, 1113-1120.	9.4	73

Frederik De Smet

#	Article	IF	CITATIONS
19	The neurovascular link in health and disease: an update. Trends in Molecular Medicine, 2009, 15, 439-451.	3.5	65
20	De novo design of a biologically active amyloid. Science, 2016, 354, .	6.0	63
21	Differential Endothelial Transcriptomics Identifies Semaphorin 3G as a Vascular Class 3 Semaphorin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 151-159.	1.1	60
22	Increased ILâ€10â€producing regulatory T cells are characteristic of severe cases of COVIDâ€19. Clinical and Translational Immunology, 2020, 9, e1204.	1.7	59
23	Structural hot spots for the solubility of globular proteins. Nature Communications, 2016, 7, 10816.	5.8	57
24	Nuclear inclusion bodies of mutant and wildâ€ŧype p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. Journal of Pathology, 2017, 242, 24-38.	2.1	54
25	Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biology, 2018, 19, 207.	3.8	42
26	Role of synectin in lymphatic development in zebrafish and frogs. Blood, 2010, 116, 3356-3366.	0.6	36
27	Fibroblast Growth Factor Signaling Affects Vascular Outgrowth and Is Required for the Maintenance of Blood Vessel Integrity. Chemistry and Biology, 2014, 21, 1310-1317.	6.2	34
28	Endothelial oxygen sensors regulate tumor vessel abnormalization by instructing phalanx endothelial cells. Journal of Molecular Medicine, 2009, 87, 561-569.	1.7	33
29	Aggregation gatekeepers modulate protein homeostasis of aggregating sequences and affect bacterial fitness. Protein Engineering, Design and Selection, 2012, 25, 357-366.	1.0	33
30	Sequence-specific protein aggregation generates defined protein knockdowns in plants. Plant Physiology, 2016, 171, pp.00335.2016.	2.3	24
31	Immunogenic cell death and its therapeutic or prognostic potential in high-grade glioma. Genes and Immunity, 2022, 23, 1-11.	2.2	24
32	Sequence-dependent Internalization of Aggregating Peptides. Journal of Biological Chemistry, 2015, 290, 242-258.	1.6	22
33	Multiplexed Immunohistochemistry and Digital Pathology as the Foundation for Next-Generation Pathology in Melanoma: Methodological Comparison and Future Clinical Applications. Frontiers in Oncology, 2021, 11, 636681.	1.3	22
34	Balancing false positives and false negatives for the detection of differential expression in malignancies. British Journal of Cancer, 2004, 91, 1160-1165.	2.9	18
35	Next-Generation Pathology by Multiplexed Immunohistochemistry. Trends in Biochemical Sciences, 2021, 46, 80-82.	3.7	18
36	Immunocompetent Mouse Models in the Search for Effective Immunotherapy in Glioblastoma. Cancers, 2021. 13. 19.	1.7	18

Frederik De Smet

#	Article	IF	CITATIONS
37	Mapping the Immune Landscape in Metastatic Melanoma Reveals Localized Cell–Cell Interactions That Predict Immunotherapy Response. Cancer Research, 2022, 82, 3275-3290.	0.4	17
38	Fishing and frogging for anti-angiogenic drugs. , 2006, 2, 228-229.		14
39	High dimensional profiling identifies specific immune types along the recovery trajectories of critically ill COVID19 patients. Cellular and Molecular Life Sciences, 2021, 78, 3987-4002.	2.4	13
40	Community-acquired pneumonia (CAP) hospitalizations and deaths: is there a role for quality improvement through inter-hospital comparisons?. International Journal for Quality in Health Care, 2016, 28, 22-32.	0.9	11
41	Establishing a Unified COVID-19 "Immunome― Integrating Coronavirus Pathogenesis and Host Immunopathology. Frontiers in Immunology, 2020, 11, 1642.	2.2	11
42	A Multi-Omics Analysis of Metastatic Melanoma Identifies a Germinal Center-Like Tumor Microenvironment in HLA-DR-Positive Tumor Areas. Frontiers in Oncology, 2021, 11, 636057.	1.3	8
43	Monocyte-Driven Atypical Cytokine Storm and Aberrant Neutrophil Activation as Key Mediators of COVID19 Disease Severity. SSRN Electronic Journal, 0, , .	0.4	3
44	Therapeutic Potential of Allosteric Modulation of FGF Receptors. , 2017, , 169-185.		0
45	OTHR-38. The development of patient-derived models of pediatric brain tumors. Neuro-Oncology, 2022, 24, i155-i155.	0.6	0
46	OTHR-39. Extraneural spreading of a diffuse leptomeningeal glioneuronal tumor in a child: patient-derived models show sensitivity to vinblastin and trametinib. Neuro-Oncology, 2022, 24, i155-i156.	0.6	0
47	HGC-56. Spatial mapping of the tumor micro-environment in pediatric glioma. Neuro-Oncology, 2022, 24, i74-i74.	0.6	Ο