Ganga Hettiarachchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5587387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlating soil nutrient test lead with bioaccessible lead in highly-contaminated soils receiving lead-immobilizing amendments. Science of the Total Environment, 2022, 807, 150658.	8.0	1
2	Phosphorus Release and Speciation in Manganese(IV) Oxide and Zeolite-Amended Flooded Soils. Environmental Science & Technology, 2022, 56, 8082-8093.	10.0	10
3	Response to Grygar (2020) comments on "Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus― Pidlisnyuk etÂal. (2019). Environmental pollution, 261: 113038. Environmental Pollution, 2021, 272, 115037.	7.5	1
4	Urban soils research: SUITMA 10. Journal of Environmental Quality, 2021, 50, 2-6.	2.0	7
5	Phytoavailability of Lead for Vegetables in Urban Garden Soils. ACS Agricultural Science and Technology, 2021, 1, 173-181.	2.3	5
6	Potential human inhalation exposure to soil contaminants in urban gardens on brownfields sites: A breath of fresh air?. Journal of Environmental Quality, 2021, 50, 782-790.	2.0	4
7	Chemistry and Associations of Carbon in Water-Stable Soil Aggregates from a Long-Term Temperate Agroecosystem and Implications on Soil Carbon Stabilization. ACS Agricultural Science and Technology, 2021, 1, 294-302.	2.3	1
8	Efficient recovery of phosphorus and sulfur from Anaerobic Membrane Bioreactor (AnMBR) permeate using chemical addition of iron and evaluation of its nutrient availability for plant uptake. Science of the Total Environment, 2021, 783, 146850.	8.0	8
9	Mineralogy of particulate inputs and P-speciation and mineralogy of recently accreted soils within Everglades stormwater treatment wetlands. Science of the Total Environment, 2021, 781, 146740.	8.0	2
10	Phytostabilization of a contaminated military site using <i>Miscanthus</i> and soil amendments. Journal of Environmental Quality, 2021, 50, 1220-1232.	2.0	16
11	50 years of articles in JEQ on trace elements in the environment, and future outlook. Journal of Environmental Quality, 2021, 50, 1266-1281.	2.0	0
12	Origin of tungsten and geochemical controls on its occurrence and mobilization in shallow sediments from Fallon, Nevada, USA. Chemosphere, 2020, 260, 127577.	8.2	17
13	Effect of Soil Treatments and Amendments on the Nematode Community under Miscanthus Growing in a Lead Contaminated Military Site. Agronomy, 2020, 10, 1727.	3.0	16
14	Co-addition of humic substances and humic acids with urea enhances foliar nitrogen use efficiency in sugarcane (Saccharum officinarum L.). Heliyon, 2020, 6, e05100.	3.2	19
15	Efficacy of amendments to improve soil physical properties at an abandoned lead and zincÂmine. , 2020, 3, e20032.		2
16	Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. Applied Sciences (Switzerland), 2020, 10, 1217.	2.5	53
17	Source and formulation matter: New insights into phosphorus fertilizer fate and transport in mildly calcareous soils. Soil Science Society of America Journal, 2020, 84, 731-746.	2.2	11
18	A Review of the Latest in Phosphorus Fertilizer Technology: Possibilities and Pragmatism. Journal of Environmental Quality, 2019, 48, 1300-1313.	2.0	82

Ganga Hettiarachchi

#	Article	IF	CITATIONS
19	Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus. Environmental Pollution, 2019, 249, 330-337.	7.5	32
20	Temporal Variation of Soil Microbial Properties in a Corn–Wheat–Soybean System. Soil Science Society of America Journal, 2019, 83, 1696-1711.	2.2	11
21	Changes in Soil Microbiology Under Conventional and No-Till Production During Crop Rotation. Kansas Agricultural Experiment Station Research Reports, 2019, 5, .	0.0	Ο
22	Subsurface Submergence of Mine Waste Materials as a Remediation Strategy to Reduce Metal Mobility: an Overview. Current Pollution Reports, 2018, 4, 35-48.	6.6	5
23	Vertical changes of soil microbial properties in claypan soils. Soil Biology and Biochemistry, 2018, 121, 154-164.	8.8	57
24	Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface. Soil Systems, 2018, 2, 60.	2.6	4
25	Sub-micron level investigation reveals the inaccessibility of stabilized carbon in soil microaggregates. Scientific Reports, 2018, 8, 16810.	3.3	18
26	Soil Chemistry and the One Health Initiative: Introduction to the Special Section. Journal of Environmental Quality, 2018, 47, 1305-1309.	2.0	5
27	Reactions of Phosphorus Fertilizers with and without a Fertilizer Enhancer in Three Acidic Soils with High Phosphorusâ€Fixing Capacity. Soil Science Society of America Journal, 2018, 82, 1124-1139.	2.2	19
28	Iron Oxides Minimize Arsenic Mobility in Soil Material Saturated with Saline Wastewater. Journal of Environmental Quality, 2018, 47, 873-883.	2.0	1
29	Metals uptake behaviour in <i>Miscanthus x giganteus</i> plant during growth at the contaminated soil from the military site in SliaÄ, Slovakia. Polish Journal of Chemical Technology, 2018, 20, 1-7.	0.5	17
30	Soil Health Profile in Claypan Soils. Kansas Agricultural Experiment Station Research Reports, 2018, 4,	0.0	0
31	Tungsten Contamination of Soils and Sediments: Current State of Science. Current Pollution Reports, 2017, 3, 55-64.	6.6	41
32	A soil column study to evaluate treatment of trace elements from saline industrial wastewater. Water Science and Technology, 2017, 76, 2698-2709.	2.5	5
33	Biogeochemical Controls on the Release and Accumulation of Mn and As in Shallow Aquifers, West Bengal, India. Frontiers in Environmental Science, 2017, 5, .	3.3	40
34	Application of Synchrotron Radiationâ€based Methods for Environmental Biogeochemistry: Introduction to the Special Section. Journal of Environmental Quality, 2017, 46, 1139-1145.	2.0	15
35	Lead Speciation and In Vitro Bioaccessibility of Compostâ€Amended Urban Garden Soils. Journal of Environmental Quality, 2017, 46, 1215-1224.	2.0	13
36	Transport and Transformation of Selenium and Other Constituents of Flueâ€Gas Desulfurization Wastewater in Waterâ€Saturated Soil Materials. Journal of Environmental Quality, 2017, 46, 384-392.	2.0	5

GANGA HETTIARACHCHI

#	Article	IF	CITATIONS
37	Key Components of Healthy Soils and Their Role in Crop Production. Kansas Agricultural Experiment Station Research Reports, 2017, 3, .	0.0	1
38	GEOCHEMICAL MECHANISMS EXPLAINING TOXIC CONCENTRATIONS OF DISSOLVED ARSENIC AND FLUORIDE IN THE INDEPENDENCE AQUIFER. , 2017, , .		0
39	GEOSPATIAL ANALYSIS OF RISK COMPONENTS FOR ELEVATED BLOOD LEAD LEVELS: GEOLOGIC AND ANTHROPOGENIC FACTORS. , 2017, , .		0
40	Rehabilitation of an Abandoned Mine Site with Biosolids. , 2017, , 241-258.		0
41	Contaminants in Urban Soils: Bioavailability and Transfer. , 2017, , 175-198.		1
42	Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?. Journal of Environmental Quality, 2016, 45, 26-36.	2.0	100
43	Utilization of Biowaste for Mine Spoil Rehabilitation. Advances in Agronomy, 2016, 138, 97-173.	5.2	34
44	Synchrotronâ€based Xâ€Ray Spectroscopy Studies for Redoxâ€based Remediation of Lead, Zinc, and Cadmium in Mine Waste Materials. Journal of Environmental Quality, 2016, 45, 1883-1893.	2.0	22
45	Mechanisms to Reduce Risk Potential. , 2016, , 155-170.		2
46	Soil Microbial Activity with Depth in Claypan Soils of Southeast Kansas. Kansas Agricultural Experiment Station Research Reports, 2016, 2, .	0.0	0
47	LINKING GEOCHEMISTRY AND DISSOLVED ORGANIC MATTER QUALITY TO MN AND AS RELEASE IN GROUNDWATER, MURSHIDABAD, WEST BENGAL, INDIA. , 2016, , .		0
48	Sustainable Gardening Initiatives in Previously Used Urban Soils. , 2015, , .		0
49	Potential Bioavailability of Lead, Arsenic, and Polycyclic Aromatic Hydrocarbons in Compost-Amended Urban Soils. Journal of Environmental Quality, 2015, 44, 930-944.	2.0	46
50	Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil. PLoS ONE, 2015, 10, e0126275.	2.5	82
51	Bioavailability-Based In Situ Remediation To Meet Future Lead (Pb) Standards in Urban Soils and Gardens. Environmental Science & Technology, 2015, 49, 8948-8958.	10.0	82
52	Harmony Park: A Decision Case on Gardening on a Brownfield Site. Journal of Natural Resources and Life Sciences Education, 2014, 43, 33-41.	1.5	3
53	Safety of Gardening on Lead- and Arsenic-Contaminated Urban Brownfields. Journal of Environmental Quality, 2014, 43, 2064-2078.	2.0	59
54	Vertisols and Vertic Properties of Soils of the Cherokee Prairies of Kansas. Soil Science Society of America Journal, 2014, 78, 556-566.	2.2	7

Ganga Hettiarachchi

#	Article	IF	CITATIONS
55	Placement and Source Effects of Phosphate Fertilizers on Phosphorus Availability and Reaction Products in Two Reduced-Till Soils. Soil Science, 2014, 179, 141-152.	0.9	10
56	Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana. Journal of Hydrology, 2014, 518, 326-341.	5.4	49
57	Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India. Science of the Total Environment, 2014, 488-489, 570-579.	8.0	64
58	Micro-X-Ray Fluorescence, Micro-X-Ray Absorption Spectroscopy, and Micro-X-Ray Diffraction Investigation of Lead Speciation after the Addition of Different Phosphorus Amendments to a Smelter-Contaminated Soil. Journal of Environmental Quality, 2014, 43, 488-497.	2.0	22
59	Field Evaluations on Soil Plant Transfer of Lead from an Urban Garden Soil. Journal of Environmental Quality, 2014, 43, 475-487.	2.0	96
60	Groundwater-sediment sorption mechanisms and role of organic matter in controlling arsenic release into aquifer sediments of Murshidabad area (Bengal basin), India. Arsenic in the Environment Proceedings, 2014, , 95-97.	0.0	2
61	Speciation of Phosphorus in a Fertilized, Reducedâ€Till Soil System: Inâ€Field Treatment Incubation Study. Soil Science Society of America Journal, 2012, 76, 2006-2018.	2.2	22
62	Dissolution Kinetics of Macronutrient Fertilizers Coated with Manufactured Zinc Oxide Nanoparticles. Journal of Agricultural and Food Chemistry, 2012, 60, 3991-3998.	5.2	191
63	Selenate-Enriched Urea Granules Are a Highly Effective Fertilizer for Selenium Biofortification of Paddy Rice Grain. Journal of Agricultural and Food Chemistry, 2012, 60, 6037-6044.	5.2	65
64	Highâ€Iron Biosolids Compost–Induced Changes in Lead and Arsenic Speciation and Bioaccessibility in Coâ€contaminated Soils. Journal of Environmental Quality, 2012, 41, 1612-1622.	2.0	34
65	Characterising the chemistry of micropores in a sodic soil with strong texture-contrast using synchrotron X-ray techniques and LA-ICP-MS. Soil Research, 2012, 50, 424.	1.1	5
66	Zinc Speciation in Proximity to Phosphate Application Points in a Lead/Zinc Smelter–Contaminated Soil. Journal of Environmental Quality, 2012, 41, 1865-1873.	2.0	22
67	Influence of submergence and subsequent drainage on the partitioning and lability of added selenium fertilizers in a sulphurâ€containing Fluvisol. European Journal of Soil Science, 2012, 63, 514-522.	3.9	8
68	Cobalt Distribution and Speciation: Effect of Aging, Intermittent Submergence, In Situ Rice Roots. Journal of Environmental Quality, 2011, 40, 679-695.	2.0	12
69	Advanced in situ Spectroscopic Techniques and their Applications in Environmental Biogeochemistry: Introduction to the Special Section. Journal of Environmental Quality, 2011, 40, 659-666.	2.0	23
70	Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions. Science of the Total Environment, 2011, 409, 1489-1497.	8.0	168
71	Release of Dissolved Cadmium and Sulfur Nanoparticles from Oxidizing Sulfide Minerals. Soil Science Society of America Journal, 2011, 75, 842-854.	2.2	13
72	Potential Availability of Fertilizer Selenium in Field Capacity and Submerged Soils. Soil Science Society of America Journal, 2010, 74, 1589-1596.	2.2	29

GANGA HETTIARACHCHI

#	Article	IF	CITATIONS
73	Chemical behavior of fluid and granular Mn and Zn fertilisers in alkaline soils. Soil Research, 2010, 48, 238.	1.1	15
74	Copper Lability in Soils Subjected to Intermittent Submergence. Journal of Environmental Quality, 2010, 39, 2047-2053.	2.0	12
75	Distribution and Speciation of Nutrient Elements around Micropores. Soil Science Society of America Journal, 2009, 73, 1319-1326.	2.2	11
76	Root Uptake of Lipophilic Zincâ^'Rhamnolipid Complexes. Journal of Agricultural and Food Chemistry, 2008, 56, 2112-2117.	5.2	40
77	Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil. Soil Science Society of America Journal, 2008, 72, 98-110.	2.2	24
78	Boron, Molybdenum, and Selenium. , 2007, , .		2
79	Density Changes around Phosphorus Granules and Fluid Bands in a Calcareous Soil. Soil Science Society of America Journal, 2006, 70, 960-966.	2.2	36
80	μ-XANES and μ-XRF Investigations of Metal Binding Mechanisms in Biosolids. Journal of Environmental Quality, 2006, 35, 342-351.	2.0	52
81	Soil lead bioavailability and in situ remediation of lead-contaminated soils: A review. Environmental Progress, 2004, 23, 78-93.	0.7	163
82	Soil Lead Bioavailability and in situ Remediation of Lead-Contaminated Soils. ChemInform, 2004, 35, no.	0.0	0
83	Title is missing!. Water, Air, and Soil Pollution, 2003, 143, 193-209.	2.4	88
84	Treatment of Contaminated Soil with Phosphorus and Manganese Oxide Reduces Lead Absorption by Sprague–Dawley Rats. Journal of Environmental Quality, 2003, 32, 1335-1345.	2.0	60
85	Sorption and Desorption of Cadmium by Different Fractions of Biosolidsâ€Amended Soils. Journal of Environmental Quality, 2003, 32, 1684-1693.	2.0	92
86	In Situ Stabilization of Soil Lead Using Phosphorus and Manganese Oxide. Journal of Environmental Quality, 2002, 31, 564.	2.0	48
87	In Situ Stabilization of Soil Lead Using Phosphorus and Manganese Oxide. Journal of Environmental Quality, 2002, 31, 564-572.	2.0	31
88	In situ stabilization of soil lead using phosphorus and manganese oxide: influence of plant growth. Journal of Environmental Quality, 2002, 31, 564-72.	2.0	14
89	In Situ Stabilization of Soil Lead Using Phosphorus. Journal of Environmental Quality, 2001, 30, 1214-1221.	2.0	191
90	In Situ Stabilization of Soil Lead Using Phosphorus and Manganese Oxide. Environmental Science & Technology, 2000, 34, 4614-4619.	10.0	220

#	Article	IF	CITATIONS
91	THE INFLUENCE OF TIME ON PHOSPHORUS SUPPLY CHARACTERISTICS OF TWO MOLLISOLS1. Soil Science, 1997, 162, 265-274.	0.9	3