Michael North

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5587040/publications.pdf

Version: 2024-02-01

149	10,391	53 h-index	98
papers	citations		g-index
161	161	161	5315
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis, characterisation and carbon dioxide capture capacities of hierarchically porous Starbons \hat{A}^{\otimes} (sup>. Green Chemistry, 2022, 24, 1545-1560.	4.6	7
2	[4â€(2â€Hydroxyphenyl)imidazolium Salts as Organocatalysts for Cycloaddition of Isocyanates and Epoxides to Yield Oxazolidinâ€2â€ones. ChemistrySelect, 2022, 7, .	0.7	3
3	Rapid and efficient adsorption of methylene blue dye from aqueous solution by hierarchically porous, activated starbons \hat{A}^{\otimes} : Mechanism and porosity dependence. Journal of Hazardous Materials, 2022, 436, 129174.	6. 5	65
4	Synthesis of cytotoxic spirocyclic imides from a biomass-derived oxanorbornene. Tetrahedron, 2021, 77, 131754.	1.0	2
5	Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chemistry, 2021, 23, 77-118.	4.6	284
6	Opportunities for the Use of Brazilian Biomass to Produce Renewable Chemicals and Materials. ChemSusChem, 2021, 14, 169-188.	3 . 6	17
7	Zeolite-mediated production of cyclic organic carbonates: reaction of CO ₂ with styrene oxide on zeolite Y impregnated with metal halides. Reaction Chemistry and Engineering, 2021, 6, 672-678.	1.9	6
8	Homogeneous aluminum and iron catalysts for the synthesis of organic molecules and biodegradable polymers., 2021,, 3-43.		0
9	Chiral titanium(IV) and vanadium(V) salen complexes as catalysts for carbon dioxide and epoxide coupling reactions. Tetrahedron, 2021, 82, 131929.	1.0	11
10	Efficient Synthesis of Cyclic Carbonates from Unsaturated Acids and Carbon Dioxide and their Application in the Synthesis of Biobased Polyurethanes. ChemPlusChem, 2021, 86, 460-468.	1.3	11
11	Carboxylcellulose hydrogel confined-Fe3O4 nanoparticles catalyst for Fenton-like degradation of Rhodamine B. International Journal of Biological Macromolecules, 2021, 180, 792-803.	3.6	28
12	Inhibition by Water during Heterogeneous BrÃ, nsted Acid Catalysis by Three-Dimensional Crystalline Organic Salts. Crystal Growth and Design, 2021, 21, 6364-6372.	1.4	3
13	Structural analysis of five-coordinate aluminium(salen) complexes and its relationship to their catalytic activity. Dalton Transactions, 2021, 50, 587-598.	1.6	14
14	A new acrylated monomer from macaw vegetable oil that polymerizes without external photoinitiators. Journal of Polymer Research, 2021, 28, 1.	1.2	6
15	Introducing the Tishchenko reaction into sustainable polymer chemistry. Green Chemistry, 2020, 22, 1542-1547.	4.6	12
16	Introducing the reversible chemistry of CO ₂ with diols mediated by organic superbases into polycarbonate synthesis. Green Chemistry, 2020, 22, 4871-4877.	4.6	10
17	Heterogeneous catalysts for cyclic carbonate synthesis from carbon dioxide and epoxides. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100365.	3.2	48
18	Spectroscopic characterization and thermal behavior of baru nut and macaw palm vegetable oils and their epoxidized derivatives. Industrial Crops and Products, 2020, 154, 112585.	2.5	19

#	Article	IF	Citations
19	Unprecedented reductive cyclisation of salophen ligands to tetrahydroquinoxalines during metal complex formation. Chemical Communications, 2020, 56, 4844-4847.	2.2	5
20	Facile preparation of polycarbonates from bio-based eugenol and 2-methoxy-4-vinylphenol. Polymer Chemistry, 2020, 11, 5133-5139.	1.9	9
21	Investigation of Parameters that Affect Resin Swelling in Green Solvents. ChemistryOpen, 2020, 9, 431-441.	0.9	10
22	The charge-assisted hydrogen-bonded organic framework (CAHOF) self-assembled from the conjugated acid of tetrakis(4-aminophenyl)methane and 2,6-naphthalenedisulfonate as a new class of recyclable BrÃ,nsted acid catalysts. Beilstein Journal of Organic Chemistry, 2020, 16, 1124-1134.	1.3	10
23	Selfâ€Assembled Ionic Composites of Negatively Charged Zn(salen) Complexes and Triphenylmethane Derived Polycations as Recyclable Catalysts for the Addition of Carbon Dioxide to Epoxides. ChemCatChem, 2019, 11, 511-519.	1.8	28
24	Synthesis of Oxazolidinones by using Carbon Dioxide as a C ₁ Building Block and an Aluminiumâ€Based Catalyst. ChemSusChem, 2019, 12, 3296-3303.	3.6	37
25	Valorization of Carbon Dioxide into Oxazolidinones by Reaction with Aziridines. Current Green Chemistry, 2019, 6, 32-43.	0.7	16
26	Resin Swelling in Mixed Solvents Analysed using Hansen Solubility Parameter Space. Chemistry - A European Journal, 2019, 25, 4869-4869.	1.7	1
27	Across the Board: Michael North on Carbon Dioxide Biorefinery. ChemSusChem, 2019, 12, 1763-1765.	3.6	13
28	Rapid Ringâ€Opening Metathesis Polymerization of Monomers Obtained from Biomassâ€Derived Furfuryl Amines and Maleic Anhydride. ChemSusChem, 2019, 12, 2393-2401.	3.6	8
29	Laminaria digitata and Palmaria palmata Seaweeds as Natural Source of Catalysts for the Cycloaddition of CO2 to Epoxides. Molecules, 2019, 24, 269.	1.7	3
30	Resin Swelling in Mixed Solvents Analysed using Hansen Solubility Parameter Space. Chemistry - A European Journal, 2019, 25, 4951-4964.	1.7	26
31	Metal- and Halide-Free Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ACS Catalysis, 2019, 9, 1895-1906.	5 . 5	140
32	Influence of Mesoporous Silica Properties on Cyclic Carbonate Synthesis Catalysed by Supported Aluminium(Salen) Complexes. Advanced Synthesis and Catalysis, 2019, 361, 345-354.	2.1	50
33	Amidinate Aluminium Complexes as Catalysts for Carbon Dioxide Fixation into Cyclic Carbonates. ChemCatChem, 2018, 10, 2271-2277.	1.8	62
34	Capacitanceâ€Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation. ChemSusChem, 2018, 11, 137-148.	3.6	15
35	Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis. RSC Advances, 2018, 8, 34297-34303.	1.7	15
36	Preparation of Novel Aromaticâ€Aliphatic Poly(ketone ester)s through Condensation of Biomassâ€Derived Monomers. ChemCatChem, 2018, 10, 5377-5381.	1.8	7

#	Article	IF	Citations
37	Renewable Selfâ€Blowing Nonâ€Isocyanate Polyurethane Foams from Lysine and Sorbitol. European Journal of Organic Chemistry, 2018, 2018, 4265-4271.	1.2	53
38	Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture. Dalton Transactions, 2018, 47, 10447-10452.	1.6	2
39	Ring-Opening Metathesis Polymerization of Tertiary Amide Monomers Derived from a Biobased Oxanorbornene. ACS Sustainable Chemistry and Engineering, 2018, 6, 9744-9752.	3.2	8
40	CO ₂ Catalysis. ChemSusChem, 2017, 10, 1036-1038.	3.6	193
41	The greening of peptide synthesis. Green Chemistry, 2017, 19, 1685-1691.	4.6	143
42	Wholly biomass derivable sustainable polymers by ring-opening metathesis polymerisation of monomers obtained from furfuryl alcohol and itaconic anhydride. Polymer Chemistry, 2017, 8, 3074-3081.	1.9	14
43	Greener solvents for solid-phase synthesis. Green Chemistry, 2017, 19, 952-962.	4.6	91
44	Isocyanurate Formation During Oxazolidinone Synthesis from Epoxides and Isocyanates Catalysed by a Chromium(Salphen) Complex. Chemistry - A European Journal, 2017, 23, 12937-12943.	1.7	19
45	Oneâ€Component Aluminum(heteroscorpionate) Catalysts for the Formation of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem, 2017, 10, 1175-1185.	3.6	68
46	A mechanistic study of the Lewis acid–Brønsted base–Brønsted acid catalysed asymmetric Michael addition of diethyl malonate to cyclohexenone. Catalysis Science and Technology, 2017, 7, 90-101.	2.1	6
47	A Bimetallic Aluminium(Salphen) Complex for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem, 2017, 10, 74-78.	3.6	88
48	Carbocation/Polyol Systems as Efficient Organic Catalysts for the Preparation of Cyclic Carbonates. ChemSusChem, 2017, 10, 1152-1159.	3.6	39
49	Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide. Symmetry, 2016, 8, 4.	1.1	25
50	Importance of Micropore–Mesopore Interfaces in Carbon Dioxide Capture by Carbonâ€Based Materials. Angewandte Chemie - International Edition, 2016, 55, 9173-9177.	7.2	66
51	Synthesis of Oxazolidinones from Epoxides and Isocyanates Catalysed by Aluminium Heteroscorpionate Complexes. ChemCatChem, 2016, 8, 2100-2108.	1.8	36
52	Cr(salophen) Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temperature And Pressure. ACS Catalysis, 2016, 6, 5012-5025.	5.5	261
53	Importance of Micropore–Mesopore Interfaces in Carbon Dioxide Capture by Carbonâ€Based Materials. Angewandte Chemie, 2016, 128, 9319-9323.	1.6	15
54	Synthesis of Cyclic Carbonates Catalysed by Chromium and Aluminium Salphen Complexes. Chemistry - A European Journal, 2016, 22, 2100-2107.	1.7	116

#	Article	IF	CITATIONS
55	Unprecedented Carbonato Intermediates in Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium(Salen) Complexes. ChemSusChem, 2016, 9, 791-794.	3.6	74
56	Halide-Free Synthesis of Cyclic and Polycarbonates. , 2016, , 413-434.		4
57	Across the Board: Michael North. ChemSusChem, 2016, 9, 2012-2014.	3.6	0
58	Ring opening metathesis polymerisation of a new bio-derived monomer from itaconic anhydride and furfuryl alcohol. Green Chemistry, 2016, 18, 3945-3948.	4.6	28
59	Chiral Cobalt(III) Complexes as Bifunctional Brønsted Acid–Lewis Base Catalysts for the Preparation of Cyclic Organic Carbonates. ChemSusChem, 2016, 9, 216-222.	3.6	79
60	Homogeneous and silica-supported zinc complexes for the synthesis of propylene carbonate from propane-1,2-diol and carbon dioxide. Catalysis Science and Technology, 2016, 6, 4824-4831.	2.1	14
61	Synthesis of Cyclic Carbonates Catalysed by Aluminium Heteroscorpionate Complexes. Chemistry - A European Journal, 2015, 21, 9850-9862.	1.7	104
62	Robust bifunctional aluminium–salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides. Beilstein Journal of Organic Chemistry, 2015, 11, 1614-1623.	1.3	40
63	Aluminum(salen) Complexes as Catalysts for the Kinetic Resolution of Terminal Epoxides via CO ₂ Coupling. ACS Catalysis, 2015, 5, 3398-3402.	5. 5	150
64	New catalysts for carboxylation of propylene glycol to propylene carbonate via high-throughput screening. Faraday Discussions, 2015, 183, 19-30.	1.6	9
65	Quinine catalysed asymmetric Michael additions in a sustainable solvent. RSC Advances, 2015, 5, 3678-3685.	1.7	23
66	Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chemistry, 2015, 17, 1966-1987.	4.6	549
67	Titanium(salen) atalysed Synthesis of Di―and Trithiocarbonates from Epoxides and Carbon Disulfide. ChemCatChem, 2014, 6, 1252-1259.	1.8	20
68	Chiral Octahedral Complexes of Cobalt(III) as "Organic Catalysts in Disguise―for the Asymmetric Addition of a Glycine Schiff Base Ester to Activated Olefins. Advanced Synthesis and Catalysis, 2014, 356, 1803-1810.	2.1	66
69	Mechanistic Investigation of the Reaction of Epoxides with Heterocumulenes Catalysed by a Bimetallic Aluminium Salen Complex. Chemistry - A European Journal, 2014, 20, 8182-8188.	1.7	38
70	Development of a Halideâ∈Free Aluminiumâ∈Based Catalyst for the Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 15005-15008.	1.7	81
71	Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes. Catalysis Science and Technology, 2014, 4, 1674-1684.	2.1	87
72	Vanadium $\langle \sup V \langle \sup \rangle$ (salen) catalysed synthesis of oxazolidinones from epoxides and isocyanates. RSC Advances, 2014, 4, 31345-31352.	1.7	37

#	Article	IF	Citations
73	Kinetics and mechanism of base catalysed ethyl cyanoformate addition to aldehydes. Tetrahedron, 2014, 70, 7100-7105.	1.0	5
74	Synthesis of Cyclic Carbonates from Polyols and Carbon Dioxide, Urea or Carbon Monoxide. Current Green Chemistry, 2014, 1, 257-272.	0.7	10
75	Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. , 2013, , 379-413.		6
76	Chiral Octahedral Complexes of Co ^{III} As a Family of Asymmetric Catalysts Operating under Phase Transfer Conditions. ACS Catalysis, 2013, 3, 1951-1955.	5.5	47
77	Influence of Temperature and Pressure on Cyclic Carbonate Synthesis Catalyzed by Bimetallic Aluminum Complexes and Application to Overall <i>syn</i> -Bis-hydroxylation of Alkenes. Journal of Organic Chemistry, 2013, 78, 419-426.	1.7	127
78	Influence of reactor design on cyclic carbonate synthesis catalysed by a bimetallic aluminium(salen) complex. Journal of CO2 Utilization, 2013, 2, 24-28.	3.3	31
79	Bimetallic Aluminum(salen) Catalyzed Synthesis of Oxazolidinones from Epoxides and Isocyanates. ACS Catalysis, 2013, 3, 790-797.	5.5	76
80	Kinetics and mechanism of the racemic addition of trimethylsilyl cyanide to aldehydes catalysed by Lewis bases. Organic and Biomolecular Chemistry, 2012, 10, 4289.	1.5	23
81	Synthesis of cyclic carbonates using monometallic, and helical bimetallic, aluminium complexes. Catalysis Science and Technology, 2012, 2, 1021.	2.1	72
82	Influence of Support and Linker Parameters on the Activity of Silicaâ€Supported Catalysts for Cyclic Carbonate Synthesis. ChemCatChem, 2012, 4, 789-794.	1.8	34
83	Inter- and intramolecular phosphonium salt cocatalysis in cyclic carbonate synthesis catalysed by a bimetallic aluminium(salen) complex. Tetrahedron Letters, 2012, 53, 2736-2740.	0.7	51
84	Synthesis of cyclic carbonates from epoxides and carbon dioxide using bimetallic aluminum(salen) complexes. Arkivoc, 2012, 2012, 610-628.	0.3	35
85	Bimetallic aluminium(acen) complexes as catalysts for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Catalysis Science and Technology, 2011, 1, 93.	2.1	76
86	Influence of flue gas on the catalytic activity of an immobilized aluminium(salen) complex for cyclic carbonate synthesis. Energy and Environmental Science, 2011, 4, 4163.	15.6	104
87	One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Transactions, 2011, 40, 3885-3902.	1.6	146
88	Proline-Catalysed Amination Reactions in Cyclic Carbonate Solvents. Molecules, 2011, 16, 3420-3432.	1.7	71
89	Reducing the Cost of Production of Bimetallic Aluminium Catalysts for the Synthesis of Cyclic Carbonates. ChemSusChem, 2011, 4, 1685-1693.	3.6	44
90	Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium–Salen Complexes. Chemistry - A European Journal, 2010, 16, 6828-6843.	1.7	352

#	Article	IF	CITATIONS
91	Investigation of Lewis Acid versus Lewis Base Catalysis in Asymmetric Cyanohydrin Synthesis. Chemistry - A European Journal, 2010, 16, 11367-11375.	1.7	26
92	A Bimetallic Titanium Catalyst for the Enantioselective Cyanation of Aldehydes Based on Cooperative Catalysis. Angewandte Chemie - International Edition, 2010, 49, 8079-8081.	7.2	28
93	Mechanistic comparison of aluminium based catalysts for asymmetric cyanohydrin synthesis. Tetrahedron, 2010, 66, 1915-1924.	1.0	23
94	Cyclic carbonates as sustainable solvents for proline-catalysed aldol reactions. Tetrahedron: Asymmetry, 2010, 21, 1262-1271.	1.8	61
95	Aluminium(salen) and Tetrabutylammonium Bromide Catalysed Synthesis of Cyclic Di- and Trithiocarbonates from Epoxides and Carbon Disulfide. Synlett, 2010, 2010, 623-627.	1.0	34
96	Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate. Beilstein Journal of Organic Chemistry, 2010, 6, 1043-1055.	1.3	33
97	A Chiral Solvent Effect in Asymmetric Organocatalysis. Organic Letters, 2010, 12, 2378-2381.	2.4	70
98	A Bimetallic Aluminum(salen) Complex for the Synthesis of 1,3-Oxathiolane-2-thiones and 1,3-Dithiolane-2-thiones. Journal of Organic Chemistry, 2010, 75, 6201-6207.	1.7	83
99	An integrated approach to energy and chemicals production. Energy and Environmental Science, 2010, 3, 212-215.	15.6	76
100	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514.	4.6	1,174
100		4.6	1,174 19
	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514. Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 2010, 46,		
101	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514. Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 2010, 46, 3372. Asymmetric ⟨i⟩meso⟨/i⟩â€Epoxide Ringâ€Opening with Trimethylsilyl Cyanide Promoted by Chiral Binuclear Complexes of Titanium. Dichotomy of Cï₺¿C versus Cï₺¿N Bond Formation. Advanced Synthesis and	2.2	19
101	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514. Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 2010, 46, 3372. Asymmetric ⟨i⟩meso⟨/i⟩â€Epoxide Ringâ€Opening with Trimethylsilyl Cyanide Promoted by Chiral Binuclear Complexes of Titanium. Dichotomy of Cï₺¿C versus Cï₺¿N Bond Formation. Advanced Synthesis and Catalysis, 2009, 351, 3157-3167. Mechanismâ€Guided Development of VO(salen)X Complexes as Catalysts for the Asymmetric Synthesis of	2.2	19
101 102 103	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514. Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 2010, 46, 3372. Asymmetric ⟨i⟩ meso⟨ i⟩ â€Epoxide Ringâ€Opening with Trimethylsilyl Cyanide Promoted by Chiral Binuclear Complexes of Titanium. Dichotomy of CC versus CN Bond Formation. Advanced Synthesis and Catalysis, 2009, 351, 3157-3167. Mechanismâ€Guided Development of VO(salen)X Complexes as Catalysts for the Asymmetric Synthesis of Cyanohydrin Trimethylsilyl Ethers. Chemistry - A European Journal, 2009, 15, 2148-2165. A Gasâ€Phase Flow Reactor for Ethylene Carbonate Synthesis from Waste Carbon Dioxide. Chemistry - A	2.2 2.1 1.7	19 30 65
101 102 103 104	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514. Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 2010, 46, 3372. Asymmetric ⟨i>meso⟨ i>â∈Epoxide Ringâ∈Opening with Trimethylsilyl Cyanide Promoted by Chiral Binuclear Complexes of Titanium. Dichotomy of Ci₺¿C versus Ci₺¿N Bond Formation. Advanced Synthesis and Catalysis, 2009, 351, 3157-3167. Mechanismâ∈Guided Development of VO(salen)X Complexes as Catalysts for the Asymmetric Synthesis of Cyanohydrin Trimethylsilyl Ethers. Chemistry - A European Journal, 2009, 15, 2148-2165. A Gasâ∈Phase Flow Reactor for Ethylene Carbonate Synthesis from Waste Carbon Dioxide. Chemistry - A European Journal, 2009, 15, 11454-11457. Organocatalytic, Asymmetric Aldol Reactions with a Sustainable Catalyst in a Green Solvent.	2.2 2.1 1.7	19 30 65 109
101 102 103 104	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514. Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 2010, 46, 3372. Asymmetric ⟨i⟩ meso⟨ i⟩â€Epoxide Ringâ€Opening with Trimethylsilyl Cyanide Promoted by Chiral Binuclear Complexes of Titanium. Dichotomy of Ci½C versus Ci½N Bond Formation. Advanced Synthesis and Catalysis, 2009, 351, 3157-3167. Mechanismâ€Guided Development of VO(salen)X Complexes as Catalysts for the Asymmetric Synthesis of Cyanohydrin Trimethylsilyl Ethers. Chemistry - A European Journal, 2009, 15, 2148-2165. A Gasâ€Phase Flow Reactor for Ethylene Carbonate Synthesis from Waste Carbon Dioxide. Chemistry - A European Journal, 2009, 15, 11454-11457. Organocatalytic, Asymmetric Aldol Reactions with a Sustainable Catalyst in a Green Solvent. ChemSusChem, 2009, 2, 862-865. Mechanism of Cyclic Carbonate Synthesis from Epoxides and CO⟨sub⟩2⟨ sub⟩. Angewandte Chemie -	2.2 2.1 1.7 1.7	19 30 65 109

#	Article	IF	CITATIONS
109	A bimetallic aluminium(salen) complex for asymmetric cyanohydrin synthesis. Tetrahedron Letters, 2009, 50, 3249-3252.	0.7	34
110	Catalytic, asymmetric cyanohydrin synthesis in propylene carbonate. Tetrahedron Letters, 2009, 50, 4452-4454.	0.7	53
111	One-component catalysts for cyclic carbonate synthesis. Chemical Communications, 2009, , 2577.	2.2	212
112	Copolymerization of amino acid and amino ester functionalized norbornenes via living ringâ€opening metathesis polymerization. Journal of Polymer Science Part A, 2008, 46, 7985-7995.	2.5	11
113	Potassium and silver chiral cobaltate(III) complexes as precatalysts for asymmetric C–C bond formation. Tetrahedron: Asymmetry, 2008, 19, 822-831.	1.8	42
114	Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chemical Reviews, 2008, 108, 5146-5226.	23.0	318
115	In Situ Formation of Heterobimetallic Salen Complexes Containing Titanium and/or Vanadium Ions. Inorganic Chemistry, 2008, 47, 3801-3814.	1.9	42
116	Synthesis of Oxygen-Containing Medium and Large Rings using One-Pot Combinations of Sequential Alkene, Enyne and Alkyne Metathesis Reactions. Advanced Synthesis and Catalysis, 2007, 349, 142-146.	2.1	15
117	Synthesis of Cyclic Carbonates from Atmospheric Pressure Carbon Dioxide Using Exceptionally Active Aluminium(salen) Complexes as Catalysts. European Journal of Inorganic Chemistry, 2007, 2007, 3323-3326.	1.0	267
118	Synthesis of Cyclic and Macrocyclic Ethers Using Metathesis Reactions of Alkenes and Alkynes. European Journal of Organic Chemistry, 2007, 2007, 3727-3745.	1.2	22
119	Asymmetric cyanohydrin synthesis using heterobimetallic catalysts obtained from titanium and vanadium complexes of chiral and achiral salen ligands. Tetrahedron, 2007, 63, 5287-5299.	1.0	44
120	Enantioselective and diastereoselective syntheses of cyanohydrin carbonates. Tetrahedron, 2007, 63, 9724-9740.	1.0	47
121	VO(salen)(X) catalysed asymmetric cyanohydrin synthesis: an unexpected influence of the nature of anion X on the catalytic activity. Chemical Communications, 2006, , 4614.	2.2	55
122	Cyanide ion cocatalysis in Ti(salen) catalysed asymmetric cyanohydrin carbonate synthesis. Chemical Communications, 2006, , 1775.	2.2	50
123	Chiral Ti(IV) complexes of hexadentate Schiff bases as precatalysts for the asymmetric addition of TMSCN to aldehydes and the ring opening of cyclohexene oxide. Tetrahedron: Asymmetry, 2006, 17, 2328-2333.	1.8	29
124	An Asymmetric, Chemo-Enzymatic Synthesis of O-Acetylcyanohydrins. European Journal of Organic Chemistry, 2006, 2006, 4609-4617.	1.2	25
125	Alkylation and Allylation Adjacent to a Carbonyl Group. , 2005, , 13-33.		0
126	Asymmetric synthesis of cyanohydrins catalysed by a potassium î"-bis[N-salicylidene-(R)-tryptophanato]cobaltate complex. Mendeleev Communications, 2004, 14, 249-250.	0.6	34

#	Article	IF	CITATIONS
127	Synthetic and mechanistic studies on asymmetric cyanohydrin synthesis using a titanium(salen) bimetallic catalyst. Tetrahedron, 2004, 60, 10433-10447.	1.0	82
128	Oxidative Synthesis of $\hat{1}$ -Amino Nitriles from Tertiary Amines. Angewandte Chemie - International Edition, 2004, 43, 4126-4128.	7.2	113
129	Influence of the metal and chiral diamine on metal(II)salen catalysed, asymmetric synthesis of $\hat{l}\pm$ -methyl $\hat{l}\pm$ -amino acids. Tetrahedron, 2004, 60, 3191-3204.	1.0	57
130	Catalytic Asymmetric Synthesis of O-Acetylcyanohydrins from Potassium Cyanide, Acetic Anhydride, and Aldehydes, Promoted by Chiral Salen Complexes of Titanium(IV) and Vanadium(V). Helvetica Chimica Acta, 2002, 85, 3301-3312.	1.0	110
131	Enyne Metathesis of Norbornene Derivatives: A Facile Approach to Polycyclic Heterocycles. Advanced Synthesis and Catalysis, 2002, 344, 694.	2.1	48
132	Synthesis of nucleic-acid base containing norbornene derivatives as monomers for ring-opening-metathesis–polymerization. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3365-3381.	1.3	4
133	Ruthenium initiated ring opening metathesis polymerisation of amino-acid and -ester functionalised norbornenes and a highly selective chain-end functionalisation reaction using molecular oxygen. Polymer, 2001, 42, 6669-6671.	1.8	52
134	Optimized catalysts for the asymmetric addition of trimethylsilyl cyanide to aldehydes and ketones. Tetrahedron, 2001, 57, 771-779.	1.0	145
135	Mechanistic Investigation of the Asymmetric Addition of Trimethylsilyl Cyanide to Aldehydes Catalysed by Dinuclear Chiral (Salen)titanium Complexes. European Journal of Organic Chemistry, 2000, 2000, 2655-2661.	1.2	84
136	Vanadium-Catalyzed Asymmetric Cyanohydrin Synthesis. Organic Letters, 2000, 2, 1617-1619.	2.4	147
137	Mechanistic Investigation of the Asymmetric Addition of Trimethylsilyl Cyanide to Aldehydes Catalysed by Dinuclear Chiral (Salen)titanium Complexes. European Journal of Organic Chemistry, 2000, 2000, 2655-2661.	1.2	1
138	Exploiting the strain in [2.2.1] bicyclic systems in polymer and synthetic organic chemistry. Advances in Strained and Interesting Organic Molecules, 2000, , 145-185.	1.2	6
139	The asymmetric addition of trimethylsilyl cyanide to ketones catalysed by a bimetallic, chiral (salen)titanium complex. Tetrahedron Letters, 1999, 40, 8147-8150.	0.7	110
140	The Asymmetric Addition of Trimethylsilyl Cyanide to Aldehydes Catalyzed by Chiral (Salen)Titanium Complexes. Journal of the American Chemical Society, 1999, 121, 3968-3973.	6.6	270
141	A New and Highly Efficient Grubbs Initiator for Ring-Opening Metathesis Polymerization. Macromolecules, 1999, 32, 6371-6373.	2.2	50
142	The synthesis and ring-opening metathesis polymerization of peptide functionalized norbornenes. Chemical Communications, 1999, , 235-236.	2.2	36
143	Title is missing!. International Journal of Peptide Research and Therapeutics, 1998, 5, 171-173.	0.1	0
144	The use of norbornene derivatives in the synthesis of conformationally constrained peptides and pseudo-peptides. International Journal of Peptide Research and Therapeutics, 1998, 5, 171-173.	0.1	4

#	Article	IF	CITATIONS
145	Living ring-opening metathesis polymerisation of amino ester functionalised norbornenes. Polymer, 1998, 39, 1007-1014.	1.8	59
146	The Baker's Yeast Reduction of Keto-Esters in Organic Solvents: A One Week Research Project for Undergraduate Students. Journal of Chemical Education, 1998, 75, 630.	1.1	3
147	Conformational Analysis of Peptides and Pseudopeptides Incorporating an endo-(2S,3R)-Norborn-5-ene Residue as a Turn Inducer. Journal of Organic Chemistry, 1998, 63, 1505-1513.	1.7	69
148	Amino acid derived homochiral polymers via ring-opening metathesis polymerisation. Journal of the Chemical Society Chemical Communications, 1994, , 2505.	2.0	40
149	Closing the loop in the synthesis of heteroscorpionate-based aluminium helicates: catalytic studies for cyclic carbonate synthesis. Dalton Transactions, 0, , .	1.6	0