Shengfeng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5586627/publications.pdf

Version: 2024-02-01

76 2,085 28
papers citations h-index

28 42
h-index g-index

76 76 all docs citations

76 times ranked 1641 citing authors

#	Article	IF	Citations
1	Promoting hybrid twins structure to reduce yield asymmetry of rolled AZ31 plates by combining side-rolling and torsion. Journal of Magnesium and Alloys, 2023, 11, 2096-2105.	11.9	11
2	Effect of Y on the high-temperature oxidation behavior of CrMoTaTi refractory high entropy alloy. International Journal of Refractory Metals and Hard Materials, 2022, 103, 105755.	3.8	12
3	Wetting properties and surface energy of four different amorphous alloys compared to the corresponding crystalline alloys. Materials Chemistry and Physics, 2022, 278, 125674.	4.0	3
4	Rapid degradation of Direct Blue dye by Co-based amorphous alloy wire. Journal of Non-Crystalline Solids, 2022, 576, 121282.	3.1	15
5	Effect of W on the thermal stability, mechanical properties and corrosion resistance of Fe-based bulk metallic glass. Intermetallics, 2022, 143, 107485.	3.9	16
6	Effects of microalloying on the isothermal and non-isothermal crystallization behaviors of TiZrSi-based metallic glasses. Journal of Materials Science, 2022, 57, 7980-7996.	3.7	1
7	Effect of free-end torsion on microstructure and mechanical properties of AZ31 bars with square section. Journal of Materials Science and Technology, 2021, 69, 20-31.	10.7	11
8	Revealing the Texture Evolution and Compressive Anisotropy in Free-End Twisted AZ31 Rods. Journal of Materials Engineering and Performance, 2021, 30, 1157-1166.	2.5	3
9	Effect of pre-rolling path on mechanical properties of rolled ZK60 alloys. Transactions of Nonferrous Metals Society of China, 2021, 31, 1322-1338.	4.2	9
10	Microstructure and electronic structure of Cr2C and Fe2Y in the Cr-coating prepared by pack-cementation on the surface of ODS steel. Materials Today Communications, 2021, 28, 102591.	1.9	2
11	High-temperature Mo-based bulk metallic glasses. Scripta Materialia, 2021, 203, 114095.	5.2	16
12	Ternary Fe–W–B bulk metallic glasses with ultrahigh thermal stabilities. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 142034.	5.6	2
13	Dataset for microstructure and mechanical properties of (CrCoNi)97Al1.5Ti1.5 medium entropy alloy twisted by free-end-torsion at room and cryogenic temperatures. Data in Brief, 2020, 33, 106333.	1.0	1
14	Microstructure and mechanical properties of (CrCoNi)97Al1.5Ti1.5 medium entropy alloy twisted by free-end-torsion at room and cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140101.	5.6	10
15	Fabrication of a Zr-based bulk metallic glass surface with extreme wettability. Journal of Non-Crystalline Solids, 2020, 536, 120001.	3.1	11
16	Ternary Co-W-B bulk metallic glasses with ultrahigh strength. Journal of Non-Crystalline Solids, 2020, 544, 120194.	3.1	10
17	Enhanced mechanical properties and degradation rate of Mg–Ni–Y alloy by introducing LPSO phase for degradable fracturing ball applications. Journal of Magnesium and Alloys, 2020, 8, 127-133.	11.9	57
18	Regulating Precipitates by Simple Cold Deformations to Strengthen Mg Alloys: A Review. Materials, 2019, 12, 2507.	2.9	18

#	Article	IF	CITATIONS
19	Ternary Co-Mo-B bulk metallic glasses with ultrahigh strength and good ductility. Journal of Non-Crystalline Solids, 2019, 524, 119657.	3.1	17
20	Low hydrogen release behavior and antibacterial property of Mg-4Zn-xSn alloys. Materials Letters, 2019, 241, 88-91.	2.6	13
21	Texture control by {10-12} twinning to improve the formability of Mg alloys: A review. Journal of Materials Science and Technology, 2019, 35, 2269-2282.	10.7	79
22	Probing the role of Johari–Goldstein relaxation in the plasticity of metallic glasses. Materials Research Letters, 2019, 7, 383-391.	8.7	6
23	Effect of Ag on the Microstructure, Mechanical and Bio-corrosion Properties of Fe–30Mn Alloy. Acta Metallurgica Sinica (English Letters), 2019, 32, 1337-1345.	2.9	11
24	Development of Fe-based bulk metallic glass composite as biodegradable metal. Materials Letters, 2019, 247, 185-188.	2.6	8
25	Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg–4Zn based alloys. Journal of Magnesium and Alloys, 2019, 7, 15-26.	11.9	68
26	In-situ formation of a gradient Mg2Si/Mg composite with good biocompatibility. Surface and Coatings Technology, 2019, 361, 255-262.	4.8	10
27	Design of Fe–Mn–Ag Alloys as Potential Candidates for Biodegradable Metals. Acta Metallurgica Sinica (English Letters), 2018, 31, 584-590.	2.9	36
28	Effect of Sr on the microstructure and biodegradable behavior of Mg–Zn–Ca-Mn alloys for implant application. Materials and Design, 2018, 153, 308-316.	7.0	52
29	Design of Fe-Based Bulk Metallic Glasses with Improved Wear Resistance. ACS Applied Materials & Interfaces, 2018, 10, 43144-43155.	8.0	53
30	Enhanced mechanical properties of Mg-Gd-Y-Zn-Mn alloy by tailoring the morphology of long period stacking ordered phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 267-275.	5.6	71
31	The Effect of Rod-Shaped Long-Period Stacking Ordered Phases Evolution on Corrosion Behavior of Mg95.33Zn2Y2.67 Alloy. Materials, 2018, 11, 815.	2.9	8
32	In vitro degradation behavior and cytocompatibility of Mg-6Zn-Mn alloy. Materials Letters, 2018, 228, 77-80.	2.6	30
33	Effects of B addition on glass forming ability and thermal behavior of FePC-based bulk metallic glasses. Journal of Iron and Steel Research International, 2017, 24, 442-447.	2.8	3
34	Micro/nano ductile-phases reinforced Fe-based bulk metallic glass matrix composite with large plasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 44-50.	5.6	18
35	Statistical Analysis on the Mechanical Properties of Magnesium Alloys. Materials, 2017, 10, 1271.	2.9	25
36	Fe-based amorphous coating for corrosion protection of magnesium alloy. Materials and Design, 2016, 108, 624-631.	7.0	78

#	Article	IF	CITATIONS
37	Corrosion Behavior of Fe-based Bulk Metallic Glass and In-situ Dendrite-reinforced Metallic Glass Matrix Composites in Acid Solution. Journal of Iron and Steel Research International, 2016, 23, 1200-1205.	2.8	9
38	Microstructure and tensile behavior of small scale resistance spot welded sandwich bulk metallic glasses. Journal of Non-Crystalline Solids, 2016, 447, 300-306.	3.1	6
39	Combined effect of isothermal annealing and pre-compression on mechanical properties of Cu36Zr48Al8Ag8 bulk metallic glass. Transactions of Nonferrous Metals Society of China, 2016, 26, 1620-1628.	4.2	13
40	Correlation between hardness and shear banding of metallic glasses under nanoindentation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 38-42.	5.6	14
41	A detailed appraisal of the stress exponent used for characterizing creep behavior in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 53-59.	5.6	19
42	Linking the thermal characteristics and mechanical properties of Fe-based bulk metallic glasses. Journal of Alloys and Compounds, 2016, 663, 867-871.	5.5	33
43	Inhomogeneous creep deformation in metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 57-60.	5.6	16
44	Nickel plating on a CuZr-based metallic glass and the influence on plasticity. Scientia Sinica: Physica, Mechanica Et Astronomica, 2015, 45, 047001-047001.	0.4	0
45	Effects of Co substitution for Fe on the glass forming ability and properties of Fe80P13C7 bulk metallic glasses. Intermetallics, 2014, 51, 53-58.	3.9	51
46	Improving the plasticity of bulk metallic glasses via pre-compression below the yield stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 602, 68-76.	5.6	29
47	Fe-based bulk metallic glasses: Brittle or ductile?. Applied Physics Letters, 2014, 105, .	3.3	105
48	Ultrahigh strength MgZnCa eutectic alloy/Fe particle composites with excellent plasticity. Materials Letters, 2014, 137, 139-142.	2.6	7
49	The evolution of local mechanical properties of bulk metallic glasses caused by structural inhomogeneity. Journal of Alloys and Compounds, 2014, 591, 315-319.	5.5	12
50	Improving mechanical properties and corrosion resistance of Mgî—,6Znî—,Mn magnesium alloy by rapid solidification. Materials Letters, 2013, 92, 45-48.	2.6	59
51	Quaternary magnetic FeNiPC bulk metallic glasses with large plasticity. Journal of Alloys and Compounds, 2013, 577, 345-350.	5.5	36
52	Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass. Materials & Design, 2013, 47, 706-710.	5.1	79
53	Effects of cooling rate on microstructure, mechanical and corrosion properties of Mg–Zn–Ca alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 1930-1935.	4.2	20
54	Atmospheric RE-free Mg-based bulk metallic glass with high bio-corrosion resistance. Journal of Non-Crystalline Solids, 2013, 379, 107-111.	3.1	17

#	Article	IF	CITATIONS
55	The effect of Mo on the glass forming ability, mechanical and magnetic properties of FePC ternary bulk metallic glasses. Journal of Alloys and Compounds, 2013, 554, 446-449.	5.5	57
56	Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater. Journal of Non-Crystalline Solids, 2013, 369, 29-33.	3.1	38
57	Enhanced mechanical properties and corrosion resistance of a Mg–Zn–Ca bulk metallic glass composite by Fe particle addition. Materials Letters, 2013, 91, 311-314.	2.6	31
58	Enhanced plasticity of Fe-based bulk metallic glass by tailoring microstructure. Transactions of Nonferrous Metals Society of China, 2012, 22, 348-353.	4.2	9
59	Corrosion resistances of amorphous and crystalline Zr-based alloys in simulated seawater. Electrochemistry Communications, 2012, 24, 39-42.	4.7	47
60	Plasticity enhancement of a Zr-based bulk metallic glass by an electroplated Cu/Ni bilayered coating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 199-203.	5.6	42
61	Structure related hardness and elastic modulus of bulk metallic glass. Journal of Applied Physics, 2012, 111, .	2.5	20
62	The structural evolution and mechanical properties of a Zr-based bulk metallic glass during superplastic gas pressure forming. Materials & Design, 2012, 37, 510-514.	5.1	5
63	The Y-doped MgZnCa alloys with ultrahigh specific strength and good corrosion resistance in simulated body fluid. Materials Letters, 2012, 81, 112-114.	2.6	18
64	Bioactive calcium titanate coatings on a Zr-based bulk metallic glass by laser cladding. Materials Letters, 2012, 82, 67-70.	2.6	25
65	A plastic Ni-free Zr-based bulk metallic glass with high specific strength and good corrosion properties in simulated body fluid. Materials Letters, 2012, 84, 81-84.	2.6	45
66	Notch toughness of Fe-based bulk metallic glass and composites. Journal of Alloys and Compounds, 2011, 509, 9441-9446.	5.5	20
67	Design of high strength Fe-(P, C)-based bulk metallic glasses with Nb addition. Transactions of Nonferrous Metals Society of China, 2011, 21, 2433-2437.	4.2	11
68	Plasticity improvement of an Fe-based bulk metallic glass by geometric confinement. Materials Letters, 2011, 65, 1172-1175.	2.6	47
69	Fe-based bulk metallic glass matrix composite with large plasticity. Scripta Materialia, 2010, 62, 329-332.	5.2	160
70	Enhancement of plasticity of Fe-based bulk metallic glass by Ni substitution for Fe. Journal of Alloys and Compounds, 2010, 504, S78-S81.	5. 5	46
71	The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass. Journal of Alloys and Compounds, 2010, 504, S74-S77.	5.5	34
72	Enhancement of glass-forming ability and bio-corrosion resistance of Zr–Co–Al bulk metallic glasses by the addition of Ag. Journal of Alloys and Compounds, 2010, 504, S163-S167.	5.5	35

SHENGFENG GUO

#	Article	lF	CITATION
73	Tensile plastic deformation of a Zr-based bulk metallic glass composite in the supercooled liquid region. Scripta Materialia, 2009, 60, 369-372.	5.2	11
74	Preparation and magnetic properties of FeCoHfMoBY bulk metallic glasses. Journal of Alloys and Compounds, 2009, 468, 54-57.	5.5	32
75	Formation of magnetic Fe-based bulk metallic glass under low vacuum. Journal of Alloys and Compounds, 2009, 478, 226-228.	5.5	25
76	The effect of Hf substitution for Zr on glass forming ability and magnetic property of FeCoZrMoBAlY bulk metallic glasses. Journal of Alloys and Compounds, 2008, 458, 214-217.	5.5	8