Satish V Patil, S V Patil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/558656/publications.pdf

Version: 2024-02-01

77 papers

2,910 citations

172457 29 h-index 52 g-index

82 all docs 82 docs citations

82 times ranked 3652 citing authors

#	Article	IF	CITATIONS
1	Is there a common water-activity limit for the three domains of life?. ISME Journal, 2015, 9, 1333-1351.	9.8	229
2	Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitology Research, 2011, 109, 823-831.	1.6	174
3	A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 2014, 61, 101-110.	3.1	172
4	Plant Extract: A Promising Biomatrix for Ecofriendly, Controlled Synthesis of Silver Nanoparticles. Applied Biochemistry and Biotechnology, 2014, 173, 1-29.	2.9	170
5	Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitology Research, 2012, 110, 1815-1822.	1.6	159
6	Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitology Research, 2012, 111, 555-562.	1.6	127
7	Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential. Applied Biochemistry and Biotechnology, 2012, 167, 776-790.	2.9	116
8	Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydrate Polymers, 2014, 106, 132-141.	10.2	108
9	Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi. Parasitology Research, 2011, 109, 1179-1187.	1.6	87
10	Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans. Applied Biochemistry and Biotechnology, 2018, 186, 199-216.	2.9	82
11	Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Natural Product Research, 2017, 31, 572-577.	1.8	73
12	Prospective of Microbial Exopolysaccharide for Heavy Metal Exclusion. Applied Biochemistry and Biotechnology, 2017, 183, 582-600.	2.9	73
13	Studies on Characterization of Bioflocculant Exopolysaccharide of Azotobacter indicus and Its Potential for Wastewater Treatment. Applied Biochemistry and Biotechnology, 2011, 163, 463-472.	2.9	72
14	Studies on Production and Biological Potential of Prodigiosin by Serratia marcescens. Applied Biochemistry and Biotechnology, 2014, 173, 1209-1221.	2.9	72
15	In vitro antiparasitic activity of microbial pigments and their combination with phytosynthesized metal nanoparticles. Parasitology International, 2015, 64, 353-356.	1.3	69
16	Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme and Microbial Technology, 2016, 92, 18-25.	3.2	62
17	Bioefficacy of Plumbago zeylanica (Plumbaginaceae) and Cestrum nocturnum (Solanaceae) plant extracts against Aedes aegypti (Diptera: Culicide) and nontarget fish Poecilia reticulata. Parasitology Research, 2011, 108, 1253-1263.	1.6	61
18	Studies on Silver Accumulation and Nanoparticle Synthesis By Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 2011, 165, 221-234.	2.9	61

#	Article	IF	CITATIONS
19	Nematicidal activity of microbial pigment from <i>Serratia marcescens</i> . Natural Product Research, 2014, 28, 1399-1404.	1.8	55
20	Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pesticide Biochemistry and Physiology, 2015, 123, 49-55.	3.6	49
21	Nano-Biochar as a Sustainable Catalyst for Anaerobic Digestion: A Synergetic Closed-Loop Approach. Catalysts, 2022, 12, 186.	3.5	41
22	Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitology Research, 2013, 112, 3283-3288.	1.6	39
23	Enhanced Production of Bacterial Cellulose by Using Gluconacetobacter hansenii NCIM 2529 Strain Under Shaking Conditions. Applied Biochemistry and Biotechnology, 2013, 169, 1497-1511.	2.9	39
24	Bioflocculant Exopolysaccharide Production by Azotobacter indicus Using Flower Extract of Madhuca latifolia L. Applied Biochemistry and Biotechnology, 2010, 162, 1095-1108.	2.9	36
25	Mechanistic approach for fabrication of gold nanoparticles by NitzschiaÂdiatom and theirÂantibacterial activity. Bioprocess and Biosystems Engineering, 2017, 40, 1437-1446.	3.4	35
26	Amoebicidal activity of phytosynthesized silver nanoparticles and their <i>in vitro</i> cytotoxicity to human cells. FEMS Microbiology Letters, 2013, 345, 127-131.	1.8	34
27	Bacterial cellulose of <i>Gluconoacetobacter hansenii </i> as a potential bioadsorption agent for its green environment applications. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 2053-2065.	3.5	33
28	Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitology Research, 2012, 110, 1841-1847.	1.6	31
29	Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens. International Journal of Cosmetic Science, 2014, 36, 571-578.	2.6	31
30	Bio-Functionalized Silver Nanoparticles: a Novel Colorimetric Probe for Cysteine Detection. Applied Biochemistry and Biotechnology, 2015, 175, 3479-3493.	2.9	29
31	Ficus carica Latex-Mediated Synthesis of Silver Nanoparticles and Its Application as a Chemophotoprotective Agent. Applied Biochemistry and Biotechnology, 2013, 171, 676-688.	2.9	28
32	Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconoacetobacter hansenii NCIM 2529. Cellulose, 2012, 19, 1655-1666.	4.9	26
33	Biofunctionalized silver nanoparticles as a novel colorimetric probe for melamine detection in raw milk. Biotechnology and Applied Biochemistry, 2015, 62, 652-662.	3.1	25
34	Potential of extracts of the tropical plant Balanites aegyptiaca (L) Del. (Balanitaceae) to control the mealy bug, Maconellicoccus hirsutus (Homoptera: Pseudococcidae). Crop Protection, 2010, 29, 1293-1296.	2.1	22
35	Transformation of aromatic dyes using green synthesized silver nanoparticles. Bioprocess and Biosystems Engineering, 2014, 37, 1695-1705.	3.4	22
36	Extracellular red Monascus pigment-mediated rapid one-step synthesis of silver nanoparticles and its application in biomedical and environment. Bioprocess and Biosystems Engineering, 2018, 41, 715-727.	3.4	21

#	Article	IF	Citations
37	Bacterial Pigment Prodigiosin Demonstrates a Unique Antiherpesvirus Activity That Is Mediated through Inhibition of Prosurvival Signal Transducers. Journal of Virology, 2020, 94, .	3.4	20
38	Innovative approach for urease inhibition by <i>Ficus carica</i> extract–fabricated silver nanoparticles: An <i>in vitro</i> study. Biotechnology and Applied Biochemistry, 2015, 62, 780-784.	3.1	19
39	Studies on endosulfan degradation by local isolate Pseudomonas aeruginosa. Biocatalysis and Agricultural Biotechnology, 2015, 4, 259-265.	3.1	19
40	Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles. Bioprocess and Biosystems Engineering, 2014, 37, 2223-2233.	3.4	18
41	Moringa Tree, Gift of Nature: a Review on Nutritional and Industrial Potential. Current Pharmacology Reports, 2022, 8, 262-280.	3.0	18
42	In Situ Development of Nanosilver-Impregnated Bacterial Cellulose for Sustainable Released Antimicrobial Wound Dressing. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 53-58.	1.6	17
43	Nano-eco toxicity study of gold nanoparticles on aquatic organism Moina macrocopa: As new versatile ecotoxicity testing model. Environmental Toxicology and Pharmacology, 2019, 68, 4-12.	4.0	16
44	A novel screening method for potential naringinaseâ€producing microorganisms. Biotechnology and Applied Biochemistry, 2019, 66, 323-327.	3.1	16
45	Moina macrocopa as a non-target aquatic organism for assessment of ecotoxicity of silver nanoparticles: Effect of size. Chemosphere, 2019, 219, 713-723.	8.2	16
46	Fluconazole treatment enhances extracellular release of red pigments in the fungus Monascus purpureus. FEMS Microbiology Letters, 2017, 364, .	1.8	15
47	Studies on Amendment of Different Biopolymers in Sandy Loam and Their Effect on Germination, Seedling Growth of Gossypium herbaceum L Applied Biochemistry and Biotechnology, 2011, 163, 780-791.	2.9	12
48	Catalytic and synergistic antibacterial potential of green synthesized silver nanoparticles: Their ecotoxicological evaluation on <i>Poecillia reticulata</i> . Biotechnology and Applied Biochemistry, 2014, 61, 385-394.	3.1	12
49	Improved method for effective screening of ACC (1-aminocyclopropane-1-carboxylate) deaminase producing microorganisms. Journal of Microbiological Methods, 2016, 131, 102-104.	1.6	12
50	Monascus Pigments Mediated Rapid Green Synthesis and Characterization of Gold Nanoparticles with Possible Mechanism. Journal of Cluster Science, 2017, 28, 2719-2732.	3.3	12
51	Screening of Rubiaceae and Apocynaceae extracts for mosquito larvicidal potential. Natural Product Research, 2015, 29, 353-358.	1.8	11
52	Prospective of <i>Monascus</i> Pigments as an Additive to Commercial Sunscreens. Natural Product Communications, 2019, 14, 1934578X1989409.	0.5	11
53	Enzymatic response of Moina macrocopa to different sized zinc oxide particles: An aquatic metal toxicology study. Environmental Research, 2021, 194, 110609.	7.5	11
54	Effect of wax degrading bacteria on life cycle of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). BioControl, 2013, 58, 535-542.	2.0	8

#	Article	IF	CITATIONS
55	Production and characterization of multifacet exopolysaccharide from an agricultural isolate, <i>Bacillus subtilis</i> . Biotechnology and Applied Biochemistry, 2019, 66, 1010-1023.	3.1	8
56	Studies on life cycle of mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae), on different hosts at different constant temperatures. Crop Protection, 2011, 30, 1553-1556.	2.1	7
57	Investigation of Bacterial Cellulose Biosynthesis Mechanism in <i>Gluconoacetobacter hansenii</i> i>., 2014, 2014, 1-7.		6
58	Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. Polymers and Polymeric Composites, 2019, , 1255-1276.	0.6	6
59	Synthesis, crystal structures and antimicrobial activity of palladium metal complexes of sulfonyl hydrazone ligands. European Journal of Chemistry, 2020, 11, 377-384.	0.6	6
60	Inhibition of restriction endonucleases by biofunctionalized silver nanoparticles: An in vitro study. Materials Letters, 2014, 134, 24-26.	2.6	5
61	Phytosynthesized Gold Nanoparticles-Bacillus thuringiensis (Bt–GNP) Formulation: A Novel Photo Stable Preparation Against Mosquito Larvae. Journal of Cluster Science, 2018, 29, 577-583.	3.3	5
62	Synthesis of 2-methyl-5-(5-phenyl substituted-1,3,4 oxadiazole-2-yl) quinazolin-4-one fluorescent brightening agent: Computational and experimental comparison of photophysical structure. Journal of Molecular Structure, 2019, 1182, 150-157.	3.6	5
63	Molecular properties of 5-(1H-Benzo[D]Oxa, thia, imid azole-2-Yl)-2-methyl quinazolin-4-ol fluorescent brighteners: Theoretical and experimental approach. Journal of Molecular Structure, 2020, 1199, 126984.	3.6	5
64	New Age Agricultural Bioinputs. , 2019, , 353-380.		5
65	Effect of Different Carbon Sources on Morphology and Silver Accumulation in Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 2015, 177, 1409-1423.	2.9	4
66	Fabrication of Paper Sensor for Rapid Screening of Nanomaterial Synthesizing Potential of Plants. Journal of Cluster Science, 2018, 29, 737-742.	3.3	4
67	Azotobacter. , 2020, , 397-426.		4
68	Use of protease inhibitory gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: A novel approach for pest control. Biocatalysis and Agricultural Biotechnology, 2016, 8, 8-12.	3.1	3
69	Impact of Microbial Cellulases on Microbial Cellulose Biotechnology. , 2016, , 31-40.		2
70	Bacterial Cellulose-Based Hydrogels: Synthesis, Properties, and Applications. Polymers and Polymeric Composites, 2018, , 1-22.	0.6	2
71	Isolation and Identification of Nonsymbiotic Azotobacter and Symbiotic Azotobacter Paspali–Paspalum notatum. Springer Protocols, 2022, , 25-33.	0.3	2
72	Isolation of Selenium Biotransforming Microbes as New Age Bioinputs. Springer Protocols, 2022, , 243-247.	0.3	1

#	Article	IF	CITATIONS
73	Isolation and Screening of Zinc Solubilizing Microbes: As Essential Micronutrient Bio-Inputs for Crops. Springer Protocols, 2022, , 181-186.	0.3	1
74	Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae. Journal of Arthropod-Borne Diseases, 2014, 8, 91-101.	0.9	1
75	Probiotics for Allergic Airway Infection and Inflammations. , 2021, , 295-313.		O
76	Strigolactones: Extraction and Characterization. Springer Protocols, 2022, , 283-288.	0.3	0
77	Isolation and Screening of: Modern Bioinputs for. Springer Protocols, 2022, , 237-242.	0.3	0