Brent N Kaiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/558651/publications.pdf

Version: 2024-02-01

5,160 56 citations papers

172386 155592 29 h-index g-index

58 58 58 docs citations times ranked all docs

6392 citing authors

55

#	Article	IF	CITATIONS
1	Liberating nitrate transport activity. Nature Plants, 2021, 7, 246-247.	4.7	1
2	Improving Nitrogen Use Efficiency Through Overexpression of Alanine Aminotransferase in Rice, Wheat, and Barley. Frontiers in Plant Science, 2021, 12, 628521.	1.7	27
3	Chickpea tolerance to temperature stress: Status and opportunity for improvement. Journal of Plant Physiology, 2021, 267, 153555.	1.6	4
4	The preceding root system drives the composition and function of the rhizosphere microbiome. Genome Biology, 2020, 21, 89.	3.8	61
5	Effect of N supply on the carbon economy of barley when accounting for plant size. Functional Plant Biology, 2020, 47, 368.	1.1	6
6	Tissue and nitrogen-linked expression profiles of ammonium and nitrate transporters in maize. BMC Plant Biology, 2019, 19, 206.	1.6	38
7	Plant roots redesign the rhizosphere to alter the threeâ€dimensional physical architecture and water dynamics. New Phytologist, 2018, 219, 542-550.	3.5	73
8	Root Ideotype Influences Nitrogen Transport and Assimilation in Maize. Frontiers in Plant Science, 2018, 9, 531.	1.7	28
9	Unraveling the Functional Role of NPF6 Transporters. Frontiers in Plant Science, 2018, 9, 973.	1.7	19
10	Maize NPF6 Proteins Are Homologs of Arabidopsis CHL1 That Are Selective for Both Nitrate and Chloride. Plant Cell, 2017, 29, 2581-2596.	3.1	93
11	A Comparison of Petiole Hydraulics and Aquaporin Expression in an Anisohydric and Isohydric Cultivar of Grapevine in Response to Water-Stress Induced Cavitation. Frontiers in Plant Science, 2017, 8, 1893.	1.7	32
12	Root Hydraulic and Aquaporin Responses to N Availability. Signaling and Communication in Plants, 2017, , 207-236.	0.5	22
13	<scp>VAMP</scp> 721a and <scp>VAMP</scp> 721d are important for pectin dynamics and release of bacteria in soybean nodules. New Phytologist, 2016, 210, 1011-1021.	3.5	38
14	The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes. Plant Science, 2016, 251, 119-127.	1.7	31
15	Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms. Plant Molecular Biology, 2016, 92, 293-312.	2.0	16
16	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	4.7	529
17	Maize maintains growth in response to decreased nitrate supply through a highly dynamic and developmental stageâ€specific transcriptional response. Plant Biotechnology Journal, 2016, 14, 342-353.	4.1	25
18	Variation for N Uptake System in Maize: Genotypic Response to N Supply. Frontiers in Plant Science, 2015, 6, 936.	1.7	39

#	Article	IF	Citations
19	Adjustment of Host Cells for Accommodation of Symbiotic Bacteria: Vacuole Defunctionalization, HOPS Suppression, and TIP1g Retargeting in <i>Medicago</i>) Â Â Â. Plant Cell, 2014, 26, 3809-3822.	3.1	73
20	Soybean <i>SAT1</i> (<i>Symbiotic Ammonium Transporter 1</i>) encodes a bHLH transcription factor involved in nodule growth and NH ₄ ⁺ transport. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4814-4819.	3.3	92
21	A novel method based on combination of semi-in vitro and in vivo conditions in Agrobacterium rhizogenes-mediated hairy root transformation of Glycine species. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 282-291.	0.9	11
22	Root apoplastic transport and water relations cannot account for differences in Clâ [^] transport and Clâ [^] /NO3 â [^] interactions of two grapevine rootstocks differing in salt tolerance. Acta Physiologiae Plantarum, 2014, 36, 687-698.	1.0	16
23	Rapid shootâ€toâ€root signalling regulates root hydraulic conductance via aquaporins. Plant, Cell and Environment, 2014, 37, 520-538.	2.8	155
24	The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist, 2013, 198, 82-94.	3.5	108
25	Chloride transport and compartmentation within main and lateral roots of two grapevine rootstocks differing in salt tolerance. Trees - Structure and Function, 2013, 27, 1317-1325.	0.9	19
26	Nitrate transport capacity of the <i>Arabidopsis thaliana</i> NRT2 family members and their interactions with AtNAR2.1. New Phytologist, 2012, 194, 724-731.	3.5	136
27	Sexual compatibility of the olive cultivar â€~Kalamata' assessed by paternity analysis. Spanish Journal of Agricultural Research, 2012, 10, 731.	0.3	14
28	Cell-Specific Vacuolar Calcium Storage Mediated by <i>CAX1</i> Regulates Apoplastic Calcium Concentration, Gas Exchange, and Plant Productivity in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2011, 23, 240-257.	3.1	222
29	Calcium delivery and storage in plant leaves: exploring the link with water flow. Journal of Experimental Botany, 2011, 62, 2233-2250.	2.4	208
30	Sexual compatibility and floral biology of some olive cultivars. New Zealand Journal of Crop and Horticultural Science, 2011, 39, 141-151.	0.7	31
31	Magnesium transporters, MGT2/MRS2â€1 and MGT3/MRS2â€5, are important for magnesium partitioning within <i>Arabidopsis thaliana</i> mesophyll vacuoles. New Phytologist, 2011, 190, 583-594.	3.5	99
32	A Glimpse at Regulation of Nitrogen Homeostasis. Structure, 2010, 18, 1395-1397.	1.6	0
33	Characterization of GmCaMK1, a member of a soybean calmodulinâ€binding receptorâ€like kinase family. FEBS Letters, 2010, 584, 4717-4724.	1.3	27
34	Dichotomy in the NRT Gene Families of Dicots and Grass Species. PLoS ONE, 2010, 5, e15289.	1.1	143
35	Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell and Environment, 2009, 32, 1272-1283.	2.8	418
36	The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies between Isohydric and Anisohydric Cultivars of Grapevine Â. Plant Physiology, 2009, 149, 445-460.	2.3	431

#	Article	IF	Citations
37	Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Functional Plant Biology, 2009, 36, 1065.	1.1	78
38	Molybdate transport through the plant sulfate transporter SHST1. FEBS Letters, 2008, 582, 1508-1513.	1.3	103
39	Inflorescence architecture of olive. Scientia Horticulturae, 2008, 116, 273-279.	1.7	30
40	A seed coat cyanohydrin glucosyltransferase is associated with bitterness in almond (Prunus dulcis) kernels. Functional Plant Biology, 2008, 35, 236.	1.1	39
41	Functional characterisation of OsAMT1.1 overexpression lines of rice, Oryza sativa. Functional Plant Biology, 2006, 33, 339.	1.1	49
42	Improved methods in Agrobacterium–mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Reports, 2006, 25, 821-828.	2.8	71
43	The Role of Molybdenum in Agricultural Plant Production. Annals of Botany, 2005, 96, 745-754.	1.4	403
44	The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant Journal, 2003, 35, 295-304.	2.8	157
45	GmZIP1 Encodes a Symbiosis-specific Zinc Transporter in Soybean. Journal of Biological Chemistry, 2002, 277, 4738-4746.	1.6	140
46	Functional Analysis of an Arabidopsis T-DNA "Knockout" of the High-Affinity NH4+ Transporter AtAMT1;1. Plant Physiology, 2002, 130, 1263-1275.	2.3	104
47	The regulation of nitrate and ammonium transport systems in plants. Journal of Experimental Botany, 2002, 53, 855-864.	2.4	391
48	Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. Journal of Plant Nutrition and Soil Science, 2001, 164, 199-207.	1.1	97
49	Urea Utilization in the Phototrophic Bacterium Rhodobacter capsulatus Is Regulated by the Transcriptional Activator NtrC. Journal of Bacteriology, 2001, 183, 637-643.	1.0	27
50	Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand., $2001, 164, 199.$		5
51	Nutrient transport across symbiotic membranes from legume nodules. Functional Plant Biology, 2001, 28, 669.	1.1	15
52	Characterization of an Ammonium Transport Protein from the Peribacteroid Membrane of Soybean Nodules., 1998, 281, 1202-1206.		82
53	Registration of Five Nearâ€Isogenic Genetic Stocks of â€Juneau' Pea with Altered Nodulation and Nitrate Reductase Deficiency: A317I, nod ₃ I, A317nod ₃ I, E135I, and R25I. Crop Science, 1998, 38, 554-554.	0.8	3
54	Role of oxygen limitation and nitrate metabolism in the nitrate inhibition of nitrogen fixation by pea. Physiologia Plantarum, 1997, 101, 45-50.	2.6	15

#	Article	IF	CITATIONS
55	Role of oxygen limitation and nitrate metabolism in the nitrate inhibition of nitrogen fixation by pea. Physiologia Plantarum, 1997, 101, 45-50.	2.6	1
56	Oxygen limitation of N2 fixation in various legume symbioses. Canadian Journal of Plant Science, 1994, 74, 853-855.	0.3	3