
Michele De Bortoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5586253/publications.pdf Version: 2024-02-01

MICHELE DE ROPTOLI

#	Article	IF	CITATIONS
1	Computational Analysis of circRNA Expression Data. Methods in Molecular Biology, 2021, 2284, 181-192.	0.4	6
2	The Estrogen Receptor Î \pm Signaling Pathway Controls Alternative Splicing in the Absence of Ligands in Breast Cancer Cells. Cancers, 2021, 13, 6261.	1.7	9
3	Docker4Circ: A Framework for the Reproducible Characterization of circRNAs from RNA-Seq Data. International Journal of Molecular Sciences, 2020, 21, 293.	1.8	8
4	DSCAM-AS1-Driven Proliferation of Breast Cancer Cells Involves Regulation of Alternative Exon Splicing and 3′-End Usage. Cancers, 2020, 12, 1453.	1.7	18
5	Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget, 2018, 9, 14580-14596.	0.8	29
6	The new world of RNA biomarkers and explorers' prudence rules. International Journal of Biological Markers, 2018, 33, 239-243.	0.7	0
7	Luminal IncRNAs Regulation by ERα-Controlled Enhancers in a Ligand-Independent Manner in Breast Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 593.	1.8	13
8	The expression of LINE1â€ <i>MET</i> chimeric transcript identifies a subgroup of aggressive breast cancers. International Journal of Cancer, 2018, 143, 2838-2848.	2.3	21
9	Pregnancy Epigenetic Signature in T Helper 17 and T Regulatory Cells in Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 3075.	2.2	26
10	Dissecting the genomic activity of a transcriptional regulator by the integrative analysis of omics data. Scientific Reports, 2017, 7, 8564.	1.6	6
11	E2 Regulates Epigenetic Signature on Neuroglobin Enhancer-Promoter in Neuronal Cells. Frontiers in Cellular Neuroscience, 2016, 10, 147.	1.8	13
12	A Novel Functional Domain of Tab2 Involved in the Interaction with Estrogen Receptor Alpha in Breast Cancer Cells. PLoS ONE, 2016, 11, e0168639.	1.1	4
13	Luminal long non-coding RNAs regulated by estrogen receptor alpha in a ligand-independent manner show functional roles in breast cancer. Oncotarget, 2016, 7, 3201-3216.	0.8	52
14	Genome-wide activity of unliganded estrogen receptor-α in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4892-4897.	3.3	77
15	Genomic lens on neuroglobin transcription. IUBMB Life, 2014, 66, 46-51.	1.5	12
16	miR148b is a major coordinator of breast cancer progression in a relapseâ€associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB Journal, 2013, 27, 1223-1235.	0.2	134
17	Targeting of the adaptor protein Tab2 as a novel approach to revert tamoxifen resistance in breast cancer cells. Oncogene, 2012, 31, 4353-4361.	2.6	26
18	The role of Transposable Elements in shaping the combinatorial interaction of Transcription Factors. BMC Genomics, 2012, 13, 400.	1.2	32

MICHELE DE BORTOLI

#	Article	IF	CITATIONS
19	Effects of Oestrogen on MicroRNA Expression in Hormone-Responsive Breast Cancer Cells. Hormones and Cancer, 2012, 3, 65-78.	4.9	51
20	Glucocorticoid receptor activity discriminates between progesterone and medroxyprogesterone activity discriminates between progesterone and medroxyprogesterone acetate effects in breast cells. Breast Cancer Research and Treatment, 2012, 131, 49-63.	1.1	53
21	CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics, 2010, 11, 435.	1.2	129
22	Valproic acid restores ERα and antiestrogen sensitivity to ERα-negative breast cancer cells. Molecular and Cellular Endocrinology, 2010, 314, 17-22.	1.6	34
23	Estrogen Receptor α Controls a Gene Network in Luminal-Like Breast Cancer Cells Comprising Multiple Transcription Factors and MicroRNAs. American Journal of Pathology, 2010, 176, 2113-2130.	1.9	151
24	ERα as ligand-independent activator of CDH-1 regulates determination and maintenance of epithelial morphology in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7420-7425.	3.3	43
25	AP-2α regulates migration of GN-11 neurons via a specific genetic programme involving the Axl receptor tyrosine kinase. BMC Biology, 2009, 7, 25.	1.7	10
26	Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. International Journal of Cancer, 2008, 123, 1327-1338.	2.3	79
27	Quantitative expression profiling of highly degraded RNA from formalin-fixed, paraffin-embedded breast tumor biopsies by oligonucleotide microarrays. Laboratory Investigation, 2008, 88, 430-440.	1.7	76
28	APâ€2α and APâ€2γ regulate tumor progression via specific genetic programs. FASEB Journal, 2008, 22, 2702-2714.	0.2	69
29	Influence of estrogens and antiestrogens on the expression of selected hormone-responsive genes. Maturitas, 2007, 57, 50-55.	1.0	13
30	The AP-2a Transcription Factor Regulates Tumor Cell Migration and Apoptosis. , 2007, 604, 87-95.		19
31	Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. Journal of Cellular Biochemistry, 2006, 98, 1163-1184.	1.2	43
32	Truncated RON Tyrosine Kinase Drives Tumor Cell Progression and Abrogates Cell-Cell Adhesion Through E-Cadherin Transcriptional Repression. Cancer Research, 2004, 64, 5154-5161.	0.4	96
33	A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome. Journal of Molecular Endocrinology, 2004, 32, 719-775.	1.1	80
34	Molecular identification of ER?-positive breast cancer cells by the expression profile of an intrinsic set of estrogen regulated genes. Journal of Cellular Physiology, 2004, 200, 440-450.	2.0	44
35	Activator protein-2gamma (AP-2gamma) expression is specifically induced by oestrogens through binding of the oestrogen receptor to a canonical element within the 5′-untranslated region. Biochemical Journal, 2004, 377, 429-438.	1.7	28
36	Angiopoietin-2 expression in breast cancer correlates with lymph node invasion and short survival. International Journal of Cancer, 2003, 103, 466-474.	2.3	182

MICHELE DE BORTOLI

#	Article	IF	CITATIONS
37	Quantitative real-time RT-PCR analysis of eight novel estrogen-regulated genes in breast cancer. International Journal of Biological Markers, 2003, 18, 123-129.	0.7	16
38	p53-dependent downregulation of metastasis-associated laminin receptor. Oncogene, 2002, 21, 7478-7487.	2.6	31
39	Role of Coactivators and Corepressors in Steroid and Nuclear Receptor Signaling: Potential Markers of Tumor Growth and Drug Sensitivity. International Journal of Biological Markers, 2001, 16, 151-166.	0.7	18
40	ErbB-4 and neuregulin expression in the adult mouse olfactory bulb after peripheral denervation. European Journal of Neuroscience, 2001, 14, 513-521.	1.2	18
41	AP-2 transcription factors in the regulation of ERBB2 gene transcription by oestrogen. Oncogene, 2000, 19, 280-288.	2.6	57
42	DNA Chips: The Future of Biomarkers. International Journal of Biological Markers, 2000, 15, 1-9.	0.7	26
43	Overexpression of the RON gene in human breast carcinoma. Oncogene, 1998, 16, 2927-2933.	2.6	190
44	Hormonal regulation of type I receptor tyrosine kinase expression in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 175-185.	1.0	15
45	Hormonal Control of Growth Factor Receptor Expression. Annals of the New York Academy of Sciences, 1996, 784, 336-348.	1.8	6
46	NDF/Heregulins Stimulate Expression of the erbB-2 Tyrosine Kinase Growth Factor Receptor Gene in Human Breast Cancer Cells. Annals of the New York Academy of Sciences, 1996, 784, 443-447.	1.8	2
47	Expression of the erb B-2 proto-oncogene during differentiation of the mammary gland in the rat. Cell and Tissue Research, 1996, 285, 403-410.	1.5	11
48	ErbB-2 expression in estrogen-receptor-positive breast-tumor cells is regulated by growth-modulatory reagents. International Journal of Cancer, 1994, 56, 522-528.	2.3	37
49	Oestrogen and epidermal growth factor down-regulate erbB-2 oncogene protein expression in breast cancer cells by different mechanisms. British Journal of Cancer, 1994, 70, 1095-1101.	2.9	33
50	Tamoxifen up-regulates c-erbB-2 expression in oestrogen-responsive breast cancer cells in vitro. European Journal of Cancer, 1992, 28, 318-321.	1.3	64
51	Hormonal regulation of c-erbB-2 oncogene expression in breast cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 21-25.	1.2	28
52	c-erbB-2 andras expression levels in breast cancer are correlated and show a co-operative association with unfavorable clinical outcome. International Journal of Cancer, 1991, 47, 833-838.	2.3	76
53	A Bombesin-Related Peptide in Experimental Mammary Tumors in Rats. Annals of the New York Academy of Sciences, 1986, 464, 450-453.	1.8	12
54	Estrogen and Progesterone Measurement and its Quality Control in Breast Cancer: A Reappraisal. International Journal of Biological Markers, 1986, 1, 15-28.	0.7	3

MICHELE DE BORTOLI

#	Article	IF	CITATIONS
55	Immunological detection and quantitation of alpha transforming growth factors in human breast carcinoma cells. Breast Cancer Research and Treatment, 1986, 7, 201-210.	1.1	110
56	Quality Assurance for Steroid Receptor Assay in Human Breast Cancer: Six Years Experience of the Italian Committee. Tumori, 1985, 71, 589-595.	0.6	9
57	Amplified expression of p21 ras protein in hormone-dependent mammary carcinomas of humans and rodents. Biochemical and Biophysical Research Communications, 1985, 127, 699-706.	1.0	86
58	Activatory effect of two cardioglycosides on Cavia cobaya kidney Na+/K+-ATPase activity. General Pharmacology, 1985, 16, 183-188.	0.7	5
59	Two classes of cAMP analogs synergistically inhibit p21 ras protein synthesis and phenotypic transformation of NIH3T3 cells transfected with Ha-MuSV DNA. Biochemical and Biophysical Research Communications, 1985, 130, 1193-1200.	1.0	26