Walter K Dodds

List of Publications by Citations

Source: https://exaly.com/author-pdf/5586251/walter-k-dodds-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,255 17 32 35 h-index g-index citations papers 2,652 5.07 35 5.2 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
32	Eutrophication of U.S. freshwaters: analysis of potential economic damages. <i>Environmental Science</i> & amp; Technology, 2009 , 43, 12-9	10.3	882
31	THE ROLE OF PERIPHYTON IN PHOSPHORUS RETENTION IN SHALLOW FRESHWATER AQUATIC SYSTEMS. <i>Journal of Phycology</i> , 2003 , 39, 840-849	3	190
30	Trophic state, eutrophication and nutrient criteria in streams. <i>Trends in Ecology and Evolution</i> , 2007 , 22, 669-76	10.9	154
29	Headwater influences on downstream water quality. Environmental Management, 2008, 41, 367-77	3.1	129
28	Human impact on freshwater ecosystem services: a global perspective. <i>Environmental Science & Environmental & Environm</i>	10.3	124
27	A technique for establishing reference nutrient concentrations across watersheds affected by humans. <i>Limnology and Oceanography: Methods</i> , 2004 , 2, 333-341	2.6	116
26	Expanding the concept of trophic state in aquatic ecosystems: It not just the autotrophs. <i>Aquatic Sciences</i> , 2007 , 69, 427-439	2.5	114
25	Carbon and nitrogen stoichiometry and nitrogen cycling rates in streams. <i>Oecologia</i> , 2004 , 140, 458-67	2.9	99
24	Quality and quantity of suspended particles in rivers: continent-scale patterns in the United States. <i>Environmental Management</i> , 2004 , 33, 355-67	3.1	61
23	Controls on nutrients across a prairie stream watershed: land use and riparian cover effects. <i>Environmental Management</i> , 2006 , 37, 634-46	3.1	51
22	A comparison of the trophic ecology of the crayfishes (Orconectes nais (Faxon) and Orconectes neglectus (Faxon)) and the central stoneroller minnow (Campostoma anomalum (Rafinesque)): omnivory in a tallgrass prairie stream. <i>Hydrobiologia</i> , 2001 , 462, 131-144	2.4	49
21	Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents. <i>Ecological Monographs</i> , 2018 , 88, 120-138	9	43
20	Stream discharge and riparian land use influence in-stream concentrations and loads of phosphorus from central plains watersheds. <i>Environmental Management</i> , 2009 , 44, 552-65	3.1	39
19	The freshwater biome gradient framework: predicting macroscale properties based on latitude, altitude, and precipitation. <i>Ecosphere</i> , 2019 , 10, e02786	3.1	38
18	Zero or not? Causes and consequences of zero-flow stream gage readings. <i>Wiley Interdisciplinary Reviews: Water</i> , 2020 , 7, e1436	5.7	36
17	Nitrogen cycling and metabolism in the thalweg of a prairie river. <i>Journal of Geophysical Research</i> , 2008 , 113,		20
16	Spatial heterogeneity and controls of ecosystem metabolism in a Great Plains river network. <i>Hydrobiologia</i> , 2018 , 813, 85-102	2.4	17

LIST OF PUBLICATIONS

15	Removal of Woody Riparian Vegetation Substantially Altered a Stream Ecosystem in an Otherwise Undisturbed Grassland Watershed. <i>Ecosystems</i> , 2019 , 22, 64-76	3.9	16
14	Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL090794	4.9	16
13	The root of the problem: Direct influence of riparian vegetation on estimation of stream ecosystem metabolic rates. <i>Limnology and Oceanography Letters</i> , 2017 , 2, 9-17	7.9	15
12	River ecosystem conceptual models and non-perennial rivers: A critical review. <i>Wiley Interdisciplinary Reviews: Water</i> , 2020 , 7, e1473	5.7	13
11	Redefining the community: a species-based approach. <i>Oikos</i> , 2006 , 112, 464-472	4	6
10	Connections and Feedback: Aquatic, Plant, and Soil Microbiomes in Heterogeneous and Changing Environments. <i>BioScience</i> , 2020 , 70, 548-562	5.7	5
9	Macrosystems revisited: challenges and successes in a new subdiscipline of ecology. <i>Frontiers in Ecology and the Environment</i> , 2021 , 19, 4-10	5.5	5
8	Gradients of Anthropogenic Nutrient Enrichment Alter N Composition and DOM Stoichiometry in Freshwater Ecosystems. <i>Global Biogeochemical Cycles</i> , 2021 , 35, e2021GB006953	5.9	4
7	Fate and toxicity of engineered nanomaterials in the environment: A meta-analysis. <i>Science of the Total Environment</i> , 2021 , 796, 148843	10.2	4
6	A framework for lotic macrosystem research. <i>Ecosphere</i> , 2021 , 12, e03342	3.1	3
5	Does Riparian Fencing Protect Stream Water Quality in Cattle-Grazed Lands?. <i>Environmental Management</i> , 2020 , 66, 121-135	3.1	2
4	Responses and resilience of tallgrass prairie streams to patch-burn grazing. <i>Journal of Applied Ecology</i> , 2020 , 57, 1303-1313	5.8	1
3	Shifting stoichiometry: Long-term trends in stream-dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid deposition. <i>Global Change Biology</i> , 2022 , 28, 98-114	11.4	1
2	State changes: insights from the U.S. Long Term Ecological Research Network. <i>Ecosphere</i> , 2021 , 12, e03	43.3	1
1	How do methodological choices influence estimation of river metabolism?. <i>Limnology and Oceanography: Methods</i> , 2021 , 19, 659-672	2.6	О