Tim Mewes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/558506/publications.pdf

Version: 2024-02-01

95 papers 2,582 citations

29 h-index 206112 48 g-index

95 all docs 95 docs citations

95 times ranked 2724 citing authors

#	Article	IF	Citations
1	Advances and Future Prospects of Spin-Transfer Torque Random Access Memory. IEEE Transactions on Magnetics, 2010, 46, 1873-1878.	2.1	311
2	Switching Distributions for Perpendicular Spin-Torque Devices Within the Macrospin Approximation. IEEE Transactions on Magnetics, 2012, 48, 4684-4700.	2.1	137
3	Local manipulation and reversal of the exchange bias field by ion irradiation in FeNi/FeMn double layers. Physical Review B, 2001, 63, .	3.2	135
4	Measurements of the exchange stiffness of YIG films using broadband ferromagnetic resonance techniques. Journal Physics D: Applied Physics, 2015, 48, 015001.	2.8	123
5	Suppression of exchange bias by ion irradiation. Applied Physics Letters, 2000, 76, 1057-1059.	3.3	97
6	Origin of low Gilbert damping in half metals. Applied Physics Letters, 2009, 95, .	3.3	95
7	Oscillatory exchange bias effect in FeNi/Cu/FeMn and FeNi/Cr/FeMn trilayer systems. Journal of Applied Physics, 2000, 87, 5064-5066.	2.5	65
8	Bulk Single Crystalâ€Like Structural and Magnetic Characteristics of Epitaxial Spinel Ferrite Thin Films with Elimination of Antiphase Boundaries. Advanced Materials, 2017, 29, 1701222.	21.0	54
9	Magnetic domain wall skyrmions. Physical Review B, 2019, 99, .	3.2	51
10	Interfacial perpendicular magnetic anisotropy and damping parameter in ultra thin Co2FeAl films. Applied Physics Letters, 2013, 102, .	3.3	49
11	Origin of fourfold anisotropy in square lattices of circular ferromagnetic dots. Physical Review B, 2006, 74, .	3.2	48
12	Magnetization relaxation and structure of CoFeGe alloys. Applied Physics Letters, 2009, 95, .	3.3	48
13	Enhanced coercivity of exchange-bias Fe/MnPd bilayers. Applied Physics Letters, 1999, 75, 707-709.	3.3	47
14	Angular dependence and phase diagrams of exchange-coupled epitaxialNi81Fe19/Fe50Mn50(001)bilayers. Physical Review B, 2002, 65, .	3.2	45
15	Radiation Studies of Spin-Transfer Torque Materials and Devices. IEEE Transactions on Nuclear Science, 2012, 59, 3027-3033.	2.0	42
16	Conductivitylike Gilbert Damping due to Intraband Scattering in Epitaxial Iron. Physical Review Letters, 2020, 124, 157201.	7.8	41
17	Spin pumping in Co ₅₆ Fe ₂₄ B ₂₀ multilayer systems. Journal Physics D: Applied Physics, 2008, 41, 215001.	2.8	40
18	Tuning exchange bias and coercive fields in ferromagnet/antiferromagnet bilayers with ion irradiation. Journal of Applied Physics, 2002, 91, 6896.	2.5	39

#	Article	IF	CITATIONS
19	Ferromagnetic resonance force microscopy studies of arrays of micron size permalloy dots. Physical Review B, 2006, 74, .	3.2	39
20	Influence of capping layers on CoFeB anisotropy and damping. Journal of Applied Physics, 2012, 112, .	2.5	39
21	Perpendicular magnetic tunnel junctions using Co-based multilayers. Journal of Applied Physics, 2010, 107, .	2.5	38
22	Progress and Prospects of Spin Transfer Torque Random Access Memory. IEEE Transactions on Magnetics, 2012, 48, 3025-3030.	2.1	35
23	Low Gilbert damping in Co2FeSi and Fe2CoSi films. Journal of Applied Physics, 2016, 120, .	2.5	35
24	Study of structural and ferromagnetic resonance properties of spinel lithium ferrite (LiFe5O8) single crystals. Journal of Applied Physics, 2015, 117, .	2.5	34
25	Probing interface magnetism in the FeMn/NiFe exchange bias system using magnetic second-harmonic generation. Europhysics Letters, 2003, 63, 819-825.	2.0	33
26	Magnetization Reversal of Exchange Bias Double Layers Magnetically Patterned by Ion Irradiation. Physica Status Solidi A, 2002, 189, 439-447.	1.7	32
27	Interlayer Exchange Coupling in Asymmetric <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>Co</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>Fe Trilayers Investigated to 10017 on the companion of the compani</mml:mi></mml:mrow></mml:mrow></mml:math>	mn ฆ่:8 ni> </td <td>/mistżmrow></td>	/m ist żmrow>
28	Magnetism and spin dynamics in room-temperature van der Waals magnet Fe ₅ GeTe ₂ . 2D Materials, 2021, 8, 045030.	4.4	32
29	Efficient Numerical Schemes for Electronic States in Coupled Quantum Dots. Journal of Nanoscience and Nanotechnology, 2008, 8, 3695-3709.	0.9	31
30	lon irradiation of exchange bias systems for magnetic sensor applications. Applied Physics A: Materials Science and Processing, 2003, 77, 51-56.	2.3	29
31	Comparative study of the epitaxial growth of Cu on MgO(001) and on hydrogen terminated Si(001). Surface Science, 2001, 481, 87-96.	1.9	28
32	Modification of the exchange bias effect by He ion irradiation. IEEE Transactions on Magnetics, 2000, 36, 2647-2649.	2.1	25
33	A comprehensive study of ferromagnetic resonance and structural properties of iron-rich nickel ferrite (Ni Fe3â^'O4, xâ%1) films grown by chemical vapor deposition. Journal of Magnetism and Magnetic Materials, 2016, 417, 137-142.	2.3	25
34	Broadband ferromagnetic resonance characterization of anisotropies and relaxation in exchange-biased IrMn/CoFe bilayers. Physical Review B, 2017, 95, .	3.2	25
35	Enhanced spin pumping near a magnetic ordering transition. Physical Review B, 2017, 96, .	3.2	25
36	Morphology of epitaxial metallic layers on MgO substrates: influence of submonolayer carbon contamination. Surface Science, 2001, 495, 68-76.	1.9	24

#	Article	IF	Citations
37	Structure and magnetic properties of exchange-biased polycrystalline Fe/MnPd bilayers. Physical Review B, 2000, 62, 8654-8657.	3.2	22
38	Relaxation of Polymer Coated $fm Fe_{3}{m O}_{4}$ Magnetic Nanoparticles in Aqueous Solution. IEEE Transactions on Magnetics, 2010, 46, 1541-1543.	2.1	22
39	Unidirectional Magnetization Relaxation in Exchange-Biased Films. IEEE Magnetics Letters, 2010, 1, 3500204-3500204.	1.1	22
40	Microstructural and ferromagnetic resonance properties of epitaxial nickel ferrite films grown by chemical vapor deposition. Applied Physics Letters, 2012, 101, .	3.3	22
41	Magnetic and Microwave Properties of Sm-Doped SrFe\$_{12}\$O\$_{19}\$ Single Crystals. IEEE Transactions on Magnetics, 2008, 44, 2978-2981.	2.1	21
42	Induced fourfold anisotropy and bias in compensated NiFe/FeMn double layers. Physical Review B, 2003, 68, .	3.2	19
43	Relaxation in Magnetic Materials for Spintronics., 2015,, 71-96.		19
44	Phase diagrams and energy barriers of exchange-biased bilayers with additional anisotropies in the ferromagnet. Physical Review B, 2003, 67, .	3.2	17
45	Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers. Journal of Applied Physics, 2004, 95, 5324-5329.	2.5	17
46	Ferromagnetic resonance force microscopy on a thin permalloy film. Applied Physics Letters, 2007, 90, 234105.	3.3	16
47	Magnetic and microwave properties of ferrimagnetic Zr-substituted Ba2Zn2Fe12O22 (Zn-Y) single crystals. Journal of Applied Physics, 2011, 109, 07A509.	2.5	15
48	Magnetic damping and spin polarization of highly ordered B2 Co2FeAl thin films. Journal of Applied Physics, 2014, 116, 073902.	2.5	15
49	Soft magnetic properties and damping parameter of (FeCo)-Al alloy thin films. AIP Advances, 2017, 7, .	1.3	15
50	Magnetic Properties of Semiconducting Spinel CdCr ₂ S ₄ Nanostructured Films Grown by Low-Pressure Metal–Organic Chemical Vapor Deposition. ACS Applied Electronic Materials, 2019, 1, 1424-1432.	4.3	15
51	Low Gilbert damping and linewidth in magnetostrictive FeGa thin films. Journal of Magnetism and Magnetic Materials, 2020, 496, 165906.	2.3	15
52	Room-temperature skyrmions in strain-engineered FeGe thin films. Physical Review B, 2020, 101, .	3.2	15
53	Temperature-dependent magnetic resonance force microscopy studies of a thin Permalloy film. Journal of Applied Physics, 2007, 101, 074905.	2.5	13
54	Growth and characterization of 144â€,μm thick barium ferrite single crystalline film for microwave device application. Journal of Applied Physics, 2009, 105, 07A511.	2.5	13

#	Article	IF	CITATIONS
55	Magnetic Damping in Epitaxial <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Iron</mml:mi></mml:math> Alloyed with Vanadium and Aluminum. Physical Review Applied, 2020, 14, .	3.8	13
56	Vectorial observation of the spin Seebeck effect in epitaxial NiFe2O4 thin films with various magnetic anisotropy contributions. Applied Physics Letters, 2019, 114 , .	3.3	12
57	Structural and magnetic properties of NiFe2O4 thin films grown on isostructural lattice-matched substrates. Applied Physics Letters, 2021, $118, \ldots$	3.3	11
58	Frequency-selective control of ferromagnetic resonance linewidth in magnetic multilayers. Applied Physics Letters, 2012, 100, 032402.	3.3	10
59	Magnetic Instability in Tunneling Magnetoresistive Heads Due to Temperature Increase During Electrostatic Discharge. IEEE Transactions on Device and Materials Reliability, 2012, 12, 570-575.	2.0	10
60	A novel technique to detect effects of electromagnetic interference by electrostatic discharge simulator to test parameters of tunneling magnetoresistive read heads. Journal of Applied Physics, 2015, 117, 17A908.	2.5	9
61	Studies of electrical and magnetic properties across the Verwey transition in epitaxial magnetite thin films. Journal of Applied Physics, 2019, 126, .	2.5	9
62	Formation of zero-field skyrmion arrays in asymmetric superlattices. Applied Physics Letters, 2020, 117,	3.3	9
63	Modeling of switching energy of magnetic tunnel junction devices with tilted magnetization. Journal of Magnetism and Magnetic Materials, 2015, 381, 220-225.	2.3	8
64	Electromagnetic interference-induced instability in CPP-GMR read heads. Journal of Magnetism and Magnetic Materials, 2016, 412, 42-48.	2.3	8
65	The Thickness Dependence of Soft Magnetic Properties of (FeCo)-Al Alloy Thin Films. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	8
66	Unidirectional and uniaxial anisotropies in the MnN/CoFeB exchange bias system. Journal of Magnetism and Magnetic Materials, 2019, 485, 374-380.	2.3	8
67	Thickness dependence of dynamic magnetic properties of soft (FeCo)-Si alloy thin films. Physical Review B, 2019, 99, .	3.2	8
68	Room-temperature intrinsic and extrinsic damping in polycrystalline Fe thin films. Physical Review B, 2022, 105, .	3.2	8
69	Correlation between topography and magnetic surface anisotropy in epitaxialFefilms on vicinal-to-(001)Ausurfaces with different step orientation. Physical Review B, 2004, 70, .	3.2	7
70	Higher-order perpendicular magnetic anisotropy and interfacial damping of Co/Ni multilayers. Physical Review B, 2020, 102, .	3.2	7
71	Exchange bias of antiferromagnets with random anisotropies and perfectly compensated interfaces. Applied Physics Letters, 2004, 84, 3840-3842.	3.3	6
72	Magnetic resonance force microscopy studies in a thin permalloy film. Journal of Magnetism and Magnetic Materials, 2007, 310, e941-e943.	2.3	6

#	Article	IF	CITATIONS
73	The growth temperature and measurement temperature dependences of soft magnetic properties and effective damping parameter of (FeCo)-Al alloy thin films. AIP Advances, 2018, 8, .	1.3	6
74	Broadband characterization of stress induced anisotropy in nanocomposite Co74.6Fe2.7Mn2.7Nb4Si2B14. Journal of Magnetism and Magnetic Materials, 2020, 500, 166307.	2.3	6
75	Ferromagnetic Resonance Study of the Verwey Phase Transition of Magnetite Thin Film on MgGaâ,,Oâ,,,(001) Substrate. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	6
76	Exchange bias effect and anisotropy analysis of FM/AF bilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 76, 59-62.	3.5	5
77	Detection of higher order modulation harmonics in magnetic resonance force microscopy. Journal of Applied Physics, 2007, 107. Ferrimagnetic Statisformula formulatype="inline"> <tex< td=""><td>2.5</td><td>5</td></tex<>	2.5	5
78	Notation="TeX">\$_{1.5}\$Ba <formula formulatype="inline"><tex notation="TeX"> \$_{0.5}\$</tex></formula> Zn <formula formulatype="inline"><tex notation="TeX">\$_2\$</tex></formula> Fe <formula formulatype="inline"><tex notation="TeX"> \$_{12}\$</tex> </formula> O&tformula formulatype="inline"> <tex< td=""><td>1.1</td><td>5</td></tex<>	1.1	5
79	Notation="TeX">\$_{22}\$. IEEE Magnetics Letters, 2011, 2, 500104-5000104. Element-Specific Detection of Sub-Nanosecond Spin-Transfer Torque in a Nanomagnet Ensemble. Nano Letters, 2020, 20, 7828-7834.	9.1	5
80	Synthesis and characterization of iron oxide superparticles with various polymers. Journal of Magnetism and Magnetic Materials, 2020, 515, 167265.	2.3	5
81	Magnetic domain wall substructures in Pt/Co/Ni/Ir multi-layers. Journal of Applied Physics, 2021, 130, .	2.5	5
82	Fe(001) on vicinal Au(001): correlation of topography and magnetic surface anisotropy. Journal Physics D: Applied Physics, 2005, 38, 1047-1054.	2.8	4
83	Thermal stability of synthetic antiferromagnet and hard magnet coupled spin valves. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 735-738.	2.1	4
84	Structural and magnetic properties of Cr-diluted CoFeB. Journal of Applied Physics, 2013, 114, 153902.	2.5	4
85	Temperature dependence of magnetic properties on switching energy in magnetic tunnel junction devices with tilted magnetization. Applied Surface Science, 2019, 472, 36-39.	6.1	4
86	Strong interfacial perpendicular anisotropy and interfacial damping in NiO.8FeO.2 films adjacent to Ru and SiO2. Journal of Applied Physics, 2019, 125, 023901.	2.5	4
87	The thickness and growth temperature dependences of soft magnetic properties and an effective damping parameter of (FeCo)-Si alloy thin films. AIP Advances, 2019, 9, 035139.	1.3	4
88	Limitations of the macrospin approximation of materials with inhomogeneous perpendicular anisotropy. Journal of Applied Physics, 2020, 128, 073910.	2.5	4
89	Soft magnetic and structural properties of (FeCo)–(AlSi) alloy thin films. Journal of Magnetism and Magnetic Materials, 2020, 507, 166852.	2.3	3
90	Evaluating the effect of Mn composition on chemical partitioning in Co(78â^'x)Fe2MnxB14Si2Nb4 magnetic amorphous nanocomposites. Journal of Alloys and Compounds, 2021, 875, 159976.	5.5	2

TIM MEWES

#	Article	IF	CITATION
91	Instability of storage and temperature increment in nanopillars due to human body model electrostatic discharge. Journal of Electrostatics, 2011, 69, 618-622.	1.9	1
92	Investigation of electromagnetic interference effects by ESD simulator on test parameters of tunneling magnetic recording heads. Journal of Magnetism and Magnetic Materials, 2017, 421, 453-456.	2.3	1
93	Ferromagnetic Resonance., 2021,, 431-452.		1
94	Angular Dependence of Spin Transfer Switching in Spin Valve Nanopillar Based Heusler Alloy. Advances in Materials Science and Engineering, 2016, 2016, 1-7.	1.8	0
95	In Situ Thermomechanical Loading for TEM Studies of Nanocrystalline Alloys. Microscopy and Microanalysis, 2021, 27, 2420-2424.	0.4	O