
Yasutoshi Koga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5584950/publications.pdf Version: 2024-02-01

Улентоені Косл

#	Article	IF	CITATIONS
1	Mitochondrial DNA depletion syndrome with a mutation in SLC25A4 developing epileptic encephalopathy: A case report. Brain and Development, 2022, 44, 56-62.	1.1	5
2	BCS1L mutations produce Fanconi syndrome with developmental disability. Journal of Human Genetics, 2022, 67, 143-148.	2.3	5
3	Growth differentiation factor 15 as a novel diagnostic and therapeutic marker for autoimmune hepatitis. Scientific Reports, 2022, 12, .	3.3	0
4	A new diagnostic indication device of a biomarker <scp>growth differentiation factor 15</scp> for mitochondrial diseases: From laboratory to automated inspection. Journal of Inherited Metabolic Disease, 2021, 44, 358-366.	3.6	7
5	Temporal changes and control variables of growth differentiation factor 15 levels during the first week of life in hospitalised newborn infants. Mitochondrion, 2021, 61, 25-30.	3.4	1
6	Growth differentiation factor 15 as a useful biomarker of heart failure in young patients with unrepaired congenital heart disease of left to right shunt. Journal of Cardiology, 2020, 75, 697-701.	1.9	2
7	Arginine therapy in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 17-22.	2.5	25
8	Mitochondrial research in Asia: A step for the mito-global conference. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129638.	2.4	0
9	Biomarker changes associated with clinical symptoms in MELAS patient. Neurology and Clinical Neuroscience, 2019, 7, 344-346.	0.4	1
10	GDF-15, a mitochondrial disease biomarker, is associated with the severity of multiple sclerosis. Journal of the Neurological Sciences, 2019, 405, 116429.	0.6	14
11	Successful treatment of infantile-onset ACAD9-related cardiomyopathy with a combination of sodium pyruvate, beta-blocker, and coenzyme Q ₁₀ . Journal of Pediatric Endocrinology and Metabolism, 2019, 32, 1181-1185.	0.9	7
12	Temple syndrome diagnosed in an adult patient with clinical autism spectrum disorder. Clinical Case Reports (discontinued), 2019, 7, 15-18.	0.5	1
13	A case of combined 21â€hydroxylase deficiency and CHARGE syndrome featuring micropenis and cryptorchidism. Molecular Genetics & Genomic Medicine, 2019, 7, e730.	1.2	4
14	Biomarkers and clinical rating scales for sodium pyruvate therapy in patients with mitochondrial disease. Mitochondrion, 2019, 48, 11-15.	3.4	21
15	Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 529-536.	1.9	79
16	Therapeutic regimen of l-arginine for MELAS: 9-year, prospective, multicenter, clinical research. Journal of Neurology, 2018, 265, 2861-2874.	3.6	56
17	International Workshop:. Neuromuscular Disorders, 2017, 27, 1126-1137.	0.6	58
18	l-Arginine intervention at hyper-acute phase protects the prolonged MRI abnormality in MELAS. Journal of Neurology, 2016, 263, 1666-1668.	3.6	16

ΥΑSUTOSHI KOGA

#	Article	IF	CITATIONS
19	Early Onset of Diabetes Mellitus Accelerates Cognitive Decline in Japanese Patients with Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes. Tohoku Journal of Experimental Medicine, 2016, 238, 311-316.	1.2	3
20	Successful Glycemic Control Decreases the Elevated Serum FGF21 Level without Affecting Normal Serum GDF15 Levels in a Patient with Mitochondrial Diabetes. Tohoku Journal of Experimental Medicine, 2016, 239, 89-94.	1.2	11
21	Mitochondrial diseases. Nature Reviews Disease Primers, 2016, 2, 16080.	30.5	1,001
22	Developmental delay and failure to thrive in a 7-month-old baby boy with spontaneous transient Graves' thyrotoxicosis: a case report. Journal of Medical Case Reports, 2016, 10, 219.	0.8	1
23	Pyruvate Improved Insulin Secretion Status in a Mitochondrial Diabetes Mellitus Patient. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1924-1926.	3.6	19
24	ADHD-like behavior in a patient with hypothalamic hamartoma. Brain and Development, 2016, 38, 145-148.	1.1	3
25	Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Annals of Neurology, 2015, 78, 814-823.	5.3	212
26	New TRPM6 mutation and management of hypomagnesaemia with secondary hypocalcaemia. Brain and Development, 2015, 37, 292-298.	1.1	18
27	Cdk5rap1-Mediated 2-Methylthio Modification of Mitochondrial tRNAs Governs Protein Translation and Contributes to Myopathy in Mice and Humans. Cell Metabolism, 2015, 21, 428-442.	16.2	95
28	CDF15 is a novel biomarker to evaluate efficacy of pyruvate therapy for mitochondrial diseases. Mitochondrion, 2015, 20, 34-42.	3.4	103
29	Efficacy of pyruvate therapy in patients with mitochondrial disease: A semi-quantitative clinical evaluation study. Molecular Genetics and Metabolism, 2014, 112, 133-138.	1.1	34
30	Glycogenic hepatopathy and nonâ€alcoholic fatty liver disease in type 1 diabetes patients. Pediatrics International, 2013, 55, 806-807.	0.5	18
31	Evaluation of Systemic Redox States in Patients Carrying the MELAS A3243G Mutation in Mitochondrial DNA. European Neurology, 2012, 67, 232-237.	1.4	17
32	MELAS: A nationwide prospective cohort study of 96 patients in Japan. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 619-624.	2.4	206
33	Molecular pathology of MELAS and l-arginine effects. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 608-614.	2.4	61
34	Biochemistry of mitochondria, life and intervention 2010. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 551-552.	2.4	1
35	A two-day-old hyperthyroid neonate with thyroid hormone resistance born to a mother with well-controlled Graves' disease: a case report. Journal of Medical Case Reports, 2012, 6, 246.	0.8	3
36	Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1α gene. Brain and Development, 2012, 34, 87-91.	1.1	45

3

ΥΑSUTOSHI KOGA

#	Article	IF	CITATIONS
37	MELAS and <scp>l</scp> â€arginine therapy: pathophysiology of strokeâ€like episodes. Annals of the New York Academy of Sciences, 2010, 1201, 104-110.	3.8	98
38	Extensive screening system using suspension array technology to detect mitochondrial DNA point mutations. Mitochondrion, 2010, 10, 300-308.	3.4	25
39	Pyruvate therapy for Leigh syndrome due to cytochrome c oxidase deficiency. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 313-315.	2.4	24
40	Inappropriate intracranial hemodynamics in the natural course of MELAS. Brain and Development, 2008, 30, 100-105.	1.1	32
41	Effect of l-arginine on synaptosomal mitochondrial function. Brain and Development, 2008, 30, 238-245.	1.1	19
42	MELAS and l-arginine therapy. Mitochondrion, 2007, 7, 133-139.	3.4	107
43	Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion, 2007, 7, 106-118.	3.4	426
44	Therapeutic potential of pyruvate therapy for mitochondrial diseases. Mitochondrion, 2007, 7, 399-401.	3.4	51
45	Mitochondrial tRNA gene mutations in patients having mitochondrial disease with lactic acidosis. Mitochondrion, 2006, 6, 29-36.	3.4	32
46	Endothelial dysfunction in MELAS improved by l-arginine supplementation. Neurology, 2006, 66, 1766-1769.	1.1	172
47	A Novel Myc-target Gene, mimitin, That Is Involved in Cell Proliferation of Esophageal Squamous Cell Carcinoma*. Journal of Biological Chemistry, 2005, 280, 19977-19985.	3.4	31
48	A new sequence variant in mitochondrial DNA associated with high penetrance of Russian Leber hereditary optic neuropathy. Mitochondrion, 2005, 5, 194-199.	3.4	29
49	Noonan syndrome, moyamoya-like vascular changes, and antiphospholipid syndrome. Pediatric Neurology, 2004, 31, 364-366.	2.1	26
50	Increased mitochondrial processing intermediates associated with three tRNALeu(UUR) gene mutations. Neuromuscular Disorders, 2003, 13, 259-262.	0.6	24
51	Effects of <scp>l</scp> -arginine on the acute phase of strokes in three patients with MELAS. Neurology, 2002, 58, 827-828.	1.1	97
52	Inter- and/or Intra-organ distribution of mitochondrial C3303T or A3243G mutation in mitochondrial cytopathy. Acta Neuropathologica, 2001, 101, 179-184.	7.7	8
53	Fatal hypertrophic cardiomyopathy associated with an A8296G mutation in the mitochondrial tRNALys gene. Human Mutation, 2000, 15, 382-382.	2.5	32
54	Single-fiber analysis of mitochondrial A3243G mutation in four different phenotypes. Acta Neuropathologica, 2000, 99, 186-190.	7.7	21

ΥΑSUTOSHI KOGA

#	Article	IF	CITATIONS
55	Heterogeneous presentation in A3243G mutation in the mitochondrial tRNALeu(UUR) gene. Archives of Disease in Childhood, 2000, 82, 407-411.	1.9	66
56	Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature, 2000, 406, 906-910.	27.8	865
57	The mitochondrial DNA C3303T mutation can cause cardiomyopathy and/or skeletal myopathy. Journal of Pediatrics, 1999, 135, 197-202.	1.8	30
58	Long-Term Analysis of Differentiation in Human Myoblasts Repopulated with Mitochondria Harboring mtDNA Mutations. Biochemical and Biophysical Research Communications, 1999, 266, 179-186.	2.1	11
59	MELAS exhibits dominant negative effects on mitochondrial RNA processing. Annals of Neurology, 1998, 43, 835-835.	5.3	11
60	P1148A in fibrillin-1 is not a mutation leading to Shprintzen-Goldberg syndrome. Human Mutation, 1997, 10, 326-327.	2.5	17
61	Mitochondrial DNA and RNA processing in MELAS. Annals of Neurology, 1996, 40, 172-180.	5.3	74
62	Analysis of cybrids harboring MELAS mutations in the mitochondrial tRNALeu(UUR) gene. Muscle and Nerve, 1995, 18, S119-S123.	2.2	48
63	Fine mapping of mitochondrial RNAs derived from the mtDNA region containing a point mutation associated with MELAS. Nucleic Acids Research, 1993, 21, 657-662.	14.5	45
64	Differential expression of genes specifying two isoforms of subunit VIa of human cytochrome c oxidase. Gene, 1992, 119, 307-312.	2.2	38
65	Use of single strand conformation polymorphism analysis to detect point mutations in human mitochondrial DNA. Journal of the Neurological Sciences, 1992, 111, 222-226.	0.6	39
66	Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Research, 1990, 18, 561-567.	14.5	345
67	Cytochrome c oxidase deficiency with acute onset and rapid recovery. Pediatric Neurology, 1990, 6, 330-332.	2.1	2
68	Chronic progressive external ophthalmoplegia: A correlative study of mitochondrial DNA deletions and their phenotypic expression in muscle biopsies. Journal of the Neurological Sciences, 1990, 100, 63-69.	0.6	106
69	Progressive cytochrome c oxidase deficiency in a case of Leigh's encephalomyelopathy. Journal of the Neurological Sciences, 1990, 95, 63-76.	0.6	9
70	Focal cytochrome c oxidase deficiency in various neuromuscular diseases. Journal of the Neurological Sciences, 1989, 91, 207-213.	0.6	49
71	Tissue specificity in cytochrome c oxidase deficient myopathy. Journal of the Neurological Sciences, 1989, 92, 193-203.	0.6	29
72	Mitochondrial DNA Deletions in Progressive External Ophthalmoplegia and Kearns-Sayre Syndrome. New England Journal of Medicine, 1989, 320, 1293-1299.	27.0	1,012

#	Article	IF	CITATIONS
73	Findings in muscle in complex I (NADH coenzyme Q reductase) deficiency. Annals of Neurology, 1988, 24, 749-756.	5.3	109
74	Defects in muscle fiber growth in fatal infantile cytochrome c oxidase deficiency. Brain and Development, 1988, 10, 223-230.	1.1	12