Francisco Bezanilla

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5584782/francisco-bezanilla-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 11,475 50 133 h-index g-index citations papers 6.54 146 12,796 10.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
133	Experimental challenges in ion channel research: uncovering basic principles of permeation and gating in potassium channels. <i>Advances in Physics: X</i> , 2022 , 7,	5.1	1
132	Optocapacitance: physical basis and its application <i>Biophysical Reviews</i> , 2022 , 14, 569-577	3.7	0
131	Molecular basis for functional connectivity between the voltage sensor and the selectivity filter gate in K channels. <i>ELife</i> , 2021 , 10,	8.9	7
130	Gating current noise produced by Brownian models of a voltage sensor. <i>Biophysical Journal</i> , 2021 , 120, 3983-4001	2.9	О
129	Remote nongenetic optical modulation of neuronal activity using fuzzy graphene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13339-13349	11.5	19
128	Transient Electrical Currents Mediated by the Na/K-ATPase: A Tour from Basic Biophysics to Human Diseases. <i>Biophysical Journal</i> , 2020 , 119, 236-242	2.9	8
127	Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6023-	-6 0 354	29
126	Metal Bridge in S4 Segment Supports Helix Transition in Shaker Channel. <i>Biophysical Journal</i> , 2020 , 118, 922-933	2.9	2
125	Nongenetic optical neuromodulation with silicon-based materials. <i>Nature Protocols</i> , 2019 , 14, 1339-137	6 18.8	35
124	Noncanonical mechanism of voltage sensor coupling to pore revealed by tandem dimers of Shaker. <i>Nature Communications</i> , 2019 , 10, 3584	17.4	15
123	An atlas of nano-enabled neural interfaces. <i>Nature Nanotechnology</i> , 2019 , 14, 645-657	28.7	80
122	Cholesterol Functionalization of Gold Nanoparticles Enhances Photoactivation of Neural Activity. <i>ACS Chemical Neuroscience</i> , 2019 , 10, 1478-1487	5.7	18
121	Methodological improvements for fluorescence recordings in oocytes. <i>Journal of General Physiology</i> , 2019 , 151, 264-272	3.4	5
120	Continuum Gating Current Models Computed with Consistent Interactions. <i>Biophysical Journal</i> , 2019 , 116, 270-282	2.9	6
119	Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. <i>Nature Nanotechnology</i> , 2018 , 13, 260-266	28.7	124
118	Demonstration of ion channel synthesis by isolated squid giant axon provides functional evidence for localized axonal membrane protein translation. <i>Scientific Reports</i> , 2018 , 8, 2207	4.9	14
117	LRET Determination of Molecular Distances during pH Gating of the Mammalian Inward Rectifier Kir1.1b. <i>Biophysical Journal</i> , 2018 , 114, 88-97	2.9	3

(2016-2018)

116	Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy. Biophysical Journal, 2018 , 114, 283-288	2.9	42
115	Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K channels. Journal of General Physiology, 2018 , 150, 307-321	3.4	10
114	Development of a PET radioligand for potassium channels to image CNS demyelination. <i>Scientific Reports</i> , 2018 , 8, 607	4.9	20
113	Optocapacitance Allows for Photostimulation of Neurons without Requiring Genetic Modification. <i>Neuromethods</i> , 2018 , 1-13	0.4	
112	Determination of the Stoichiometry between 🛭 and 🖺 Subunits of the BK Channel Using LRET. <i>Biophysical Journal</i> , 2018 , 114, 2493-2497	2.9	6
111	Replacing voltage sensor arginines with citrulline provides mechanistic insight into charge versus shape. <i>Journal of General Physiology</i> , 2018 , 150, 1017-1024	3.4	11
110	Roadmap on semiconductor-cell biointerfaces. <i>Physical Biology</i> , 2018 , 15, 031002	3	34
109	Influences: The Cell Physiology Laboratory in Montemar, Chile. <i>Journal of General Physiology</i> , 2018 , 150, 1464-1468	3.4	4
108	Gating currents. Journal of General Physiology, 2018, 150, 911-932	3.4	39
107	Inversion of the Side-Chain Stereochemistry of Indvidual Thr or Ile Residues in a Protein Molecule: Impact on the Folding, Stability, and Structure of the ShK Toxin. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3324-3328	16.4	12
106	Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E1857	-É1865	; 29
105	Non-Canonical Interactions between Voltage Sensors and Pore Domain in Shaker K + -Channel. <i>Biophysical Journal</i> , 2017 , 112, 162a	2.9	2
104	Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit. <i>Scientific Reports</i> , 2017 , 7, 45310	4.9	6
103	Correspondence: Reply to Revisiting the theoretical cell membrane thermal capacitance responseT <i>Nature Communications</i> , 2017 , 8, 1432	17.4	3
102	Biophysical Characterization of Genetically Encoded Voltage Sensor ASAP1: Dynamic Range Improvement. <i>Biophysical Journal</i> , 2017 , 113, 2178-2181	2.9	10
101	Nav channel binder containing a specific conjugation-site based on a low toxicity Escorpion toxin. <i>Scientific Reports</i> , 2017 , 7, 16329	4.9	6
100	Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. <i>Nature Materials</i> , 2016 , 15, 1023-30	27	99
99	Elucidation of the Covalent and Tertiary Structures of Biologically Active Ts3 Toxin. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8639-42	16.4	13

98	Gating Current Models Computed with Consistent Interactions. <i>Biophysical Journal</i> , 2016 , 110, 102a-10	3 a .9	2
97	¶-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3231-9	11.5	13
96	A Novel Voltage Sensor in the Orthosteric Binding Site of the M2 Muscarinic Receptor. <i>Biophysical Journal</i> , 2016 , 111, 1396-1408	2.9	26
95	Mechanism of potassium ion uptake by the Na(+)/K(+)-ATPase. <i>Nature Communications</i> , 2015 , 6, 7622	17.4	36
94	Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. <i>Neuron</i> , 2015 , 86, 207-17	13.9	221
93	Functional Site-Directed Fluorometry. Advances in Experimental Medicine and Biology, 2015, 869, 55-76	3.6	16
92	Resting state of the human proton channel dimer in a lipid bilayer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E5926-35	11.5	51
91	Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization. <i>Nature Communications</i> , 2015 , 6, 10173	17.4	28
90	A structural rearrangement of the Na+/K+-ATPase traps ouabain within the external ion permeation pathway. <i>Journal of Molecular Biology</i> , 2015 , 427, 1335-1344	6.5	10
89	Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator. <i>ELife</i> , 2015 , 4, e10482	8.9	26
88	Probing B(10) transitions in a voltage-sensing S4 helix. <i>Biophysical Journal</i> , 2014 , 107, 1117-1128	2.9	20
87	Molecular mechanism of Mg2+-dependent gating in CorA. <i>Nature Communications</i> , 2014 , 5, 3590	17.4	39
86	Real-time imaging of electrical signals with an infrared FDA-approved dye. <i>Biophysical Journal</i> , 2014 , 107, L09-12	2.9	35
85	Total chemical synthesis of biologically active fluorescent dye-labeled Ts1 toxin. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8970-4	16.4	24
84	Moving gating charges through the gating pore in a Kv channel voltage sensor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E1950-9	11.5	46
83	Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation. <i>Neuron</i> , 2013 , 79, 651-7	13.9	44
82	S3-S4 linker length modulates the relaxed state of a voltage-gated potassium channel. <i>Biophysical Journal</i> , 2013 , 105, 2312-22	2.9	25
81	Thermal mechanisms of millimeter wave stimulation of excitable cells. <i>Biophysical Journal</i> , 2013 , 104, 2622-8	2.9	19

(2011-2013)

80	Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. <i>Journal of General Physiology</i> , 2013 , 142, 101-12	3.4	130
79	The gating charge should not be estimated by fitting a two-state model to a Q-V curve. <i>Journal of General Physiology</i> , 2013 , 142, 575-8	3.4	32
78	Sensing charges of the Ciona intestinalis voltage-sensing phosphatase. <i>Journal of General Physiology</i> , 2013 , 142, 543-55	3.4	28
77	IKs channels open slowly because KCNE1 accessory subunits slow the movement of S4 voltage sensors in KCNQ1 pore-forming subunits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E559-66	11.5	45
76	An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. <i>Journal of General Physiology</i> , 2012 , 140, 587-94	3.4	141
75	Intermediate state trapping of a voltage sensor. <i>Journal of General Physiology</i> , 2012 , 140, 635-52	3.4	43
74	Infrared light excites cells by changing their electrical capacitance. <i>Nature Communications</i> , 2012 , 3, 736	517.4	375
73	Gating currents from Kv7 channels carrying neuronal hyperexcitability mutations in the voltage-sensing domain. <i>Biophysical Journal</i> , 2012 , 102, 1372-82	2.9	28
72	Tuning the voltage-sensor motion with a single residue. <i>Biophysical Journal</i> , 2012 , 103, L23-L25	2.9	17
71	Nano-positioning system for structural analysis of functional homomeric proteins in multiple conformations. <i>Structure</i> , 2012 , 20, 1629-40	5.2	13
7°	The dynamic relationships between the three events that release individual Na+ ions from the Na+/K+-ATPase. <i>Nature Communications</i> , 2012 , 3, 669	17.4	42
69	Depolarization induces a conformational change in the binding site region of the M2 muscarinic receptor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 285-90	11.5	30
68	Molecular mechanism for depolarization-induced modulation of Kv channel closure. <i>Journal of General Physiology</i> , 2012 , 140, 481-93	3.4	34
67	Properties of deactivation gating currents in Shaker channels. <i>Biophysical Journal</i> , 2011 , 100, L28-30	2.9	37
66	In search of a consensus model of the resting state of a voltage-sensing domain. <i>Neuron</i> , 2011 , 72, 713-	21 3.9	78
65	Ouabain binding site in a functioning Na+/K+ ATPase. <i>Journal of Biological Chemistry</i> , 2011 , 286, 38177-	 3 <u>\$</u> 483	43
64	Voltage-Gated Ion Channels: The Machines Responsible for the Nerve Impulse 2011 , 231-248		1
63	Control of a final gating charge transition by a hydrophobic residue in the S2 segment of a K+ channel voltage sensor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 6444-9	11.5	50

62	Energy landscape of the reactions governing the Na+ deeply occluded state of the Na+/K+-ATPase in the giant axon of the Humboldt squid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 20556-61	11.5	14
61	Coupling between the voltage-sensing and phosphatase domains of Ci-VSP. <i>Journal of General Physiology</i> , 2009 , 134, 5-14	3.4	55
60	Charge movement of a voltage-sensitive fluorescent protein. <i>Biophysical Journal</i> , 2009 , 96, L19-21	2.9	49
59	Gating currents from neuronal KV7.4 Channels: General features and correlation with the ionic conductance. <i>Channels</i> , 2009 , 3, 277-286	3	25
58	How membrane proteins sense voltage. <i>Nature Reviews Molecular Cell Biology</i> , 2008 , 9, 323-32	48.7	357
57	A common pathway for charge transport through voltage-sensing domains. <i>Neuron</i> , 2008 , 57, 345-51	13.9	54
56	Ion channels: from conductance to structure. <i>Neuron</i> , 2008 , 60, 456-68	13.9	56
55	Fluorescence detection of the movement of single KcsA subunits reveals cooperativity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 20263-8	11.5	43
54	Alpha-scorpion toxin impairs a conformational change that leads to fast inactivation of muscle sodium channels. <i>Journal of General Physiology</i> , 2008 , 132, 251-63	3.4	82
53	S4-based voltage sensors have three major conformations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 17600-7	11.5	170
52	In vivo measurement of intramolecular distances using genetically encoded reporters. <i>Biophysical Journal</i> , 2007 , 93, L45-7	2.9	44
51	beta-Scorpion toxin modifies gating transitions in all four voltage sensors of the sodium channel. <i>Journal of General Physiology</i> , 2007 , 130, 257-68	3.4	67
50	Two atomic constraints unambiguously position the S4 segment relative to S1 and S2 segments in the closed state of Shaker K channel. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 7904-9	11.5	145
49	Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 15865-70	11.5	35
48	Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. <i>Journal of General Physiology</i> , 2006 , 128, 569-81	3.4	87
47	Movement of Tgating chargeTis coupled to ligand binding in a G-protein-coupled receptor. <i>Nature</i> , 2006 , 444, 106-9	50.4	129
46	The action potential: from voltage-gated conductances to molecular structures. <i>Biological Research</i> , 2006 , 39, 425-35	7.6	21
45	Voltage-gated ion channels. <i>IEEE Transactions on Nanobioscience</i> , 2005 , 4, 34-48	3.4	95

(2000-2005)

44	Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. <i>Nature</i> , 2005 , 436, 848-51	50.4	169
43	Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. <i>Nature</i> , 2005 , 436, 852-6	50.4	226
42	Optical detection of rate-determining ion-modulated conformational changes of the ether-Igo-go K+ channel voltage sensor. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 18718-23	11.5	32
41	Perturbation analysis of the voltage-sensitive conformational changes of the Na+/glucose cotransporter. <i>Journal of General Physiology</i> , 2005 , 125, 13-36	3.4	36
40	Gating of the bacterial sodium channel, NaChBac: voltage-dependent charge movement and gating currents. <i>Journal of General Physiology</i> , 2004 , 124, 349-56	3.4	79
39	Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. <i>Journal of General Physiology</i> , 2004 , 123, 217-30	3.4	90
38	A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 10195-200	11.5	75
37	A proton pore in a potassium channel voltage sensor reveals a focused electric field. <i>Nature</i> , 2004 , 427, 548-53	50.4	335
36	Detecting rearrangements of shaker and NaChBac in real-time with fluorescence spectroscopy in patch-clamped mammalian cells. <i>Biophysical Journal</i> , 2004 , 86, 3966-80	2.9	48
35	The voltage sensor and the gate in ion channels. Advances in Protein Chemistry, 2003, 63, 211-41		29
35 34	The voltage sensor and the gate in ion channels. <i>Advances in Protein Chemistry</i> , 2003 , 63, 211-41 A physical model of potassium channel activation: from energy landscape to gating kinetics. <i>Biophysical Journal</i> , 2003 , 84, 3703-16	2.9	29 37
	A physical model of potassium channel activation: from energy landscape to gating kinetics.	2.9	37
34	A physical model of potassium channel activation: from energy landscape to gating kinetics. Biophysical Journal, 2003, 84, 3703-16 A fluorometric approach to local electric field measurements in a voltage-gated ion channel.		37
34	A physical model of potassium channel activation: from energy landscape to gating kinetics. Biophysical Journal, 2003, 84, 3703-16 A fluorometric approach to local electric field measurements in a voltage-gated ion channel. Neuron, 2003, 37, 85-97 Fast gating in the Shaker K+ channel and the energy landscape of activation. Proceedings of the	13.9	37
34 33 32	A physical model of potassium channel activation: from energy landscape to gating kinetics. <i>Biophysical Journal</i> , 2003 , 84, 3703-16 A fluorometric approach to local electric field measurements in a voltage-gated ion channel. <i>Neuron</i> , 2003 , 37, 85-97 Fast gating in the Shaker K+ channel and the energy landscape of activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 7611-5 Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during	13.9	37 107 60
34 33 32 31	A physical model of potassium channel activation: from energy landscape to gating kinetics. <i>Biophysical Journal</i> , 2003 , 84, 3703-16 A fluorometric approach to local electric field measurements in a voltage-gated ion channel. <i>Neuron</i> , 2003 , 37, 85-97 Fast gating in the Shaker K+ channel and the energy landscape of activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 7611-5 Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. <i>Journal of General Physiology</i> , 2002 , 120, 629-45	13.9 11.5 3.4	37 107 60 255
34 33 32 31 30	A physical model of potassium channel activation: from energy landscape to gating kinetics. <i>Biophysical Journal</i> , 2003 , 84, 3703-16 A fluorometric approach to local electric field measurements in a voltage-gated ion channel. <i>Neuron</i> , 2003 , 37, 85-97 Fast gating in the Shaker K+ channel and the energy landscape of activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 7611-5 Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. <i>Journal of General Physiology</i> , 2002 , 120, 629-45 Structural biology. Force and voltage sensors in one structure. <i>Science</i> , 2002 , 298, 1562-3 A comparison of propagated action potentials from tropical and temperate squid axons: different durations and conduction velocities correlate with ionic conductance levels. <i>Journal of Experimental</i>	13.9 11.5 3.4 33.3	371076025523

26	The voltage sensor in voltage-dependent ion channels. <i>Physiological Reviews</i> , 2000 , 80, 555-92	47.9	721
25	Extracellular Mg(2+) modulates slow gating transitions and the opening of Drosophila ether-Go-Go potassium channels. <i>Journal of General Physiology</i> , 2000 , 115, 319-38	3.4	42
24	Modulation of the Shaker K(+) channel gating kinetics by the S3-S4 linker. <i>Journal of General Physiology</i> , 2000 , 115, 193-208	3.4	68
23	Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. <i>Nature</i> , 1999 , 402, 809-13	50.4	438
22	Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation. <i>Neuron</i> , 1999 , 22, 73-87	13.9	235
21	KramersTdiffusion theory applied to gating kinetics of voltage-dependent ion channels. <i>Biophysical Journal</i> , 1999 , 76, 782-803	2.9	62
20	Fluorescence techniques for studying cloned channels and transporters expressed in Xenopus oocytes. <i>Methods in Enzymology</i> , 1998 , 296, 566-78	1.7	20
19	Cut-open oocyte voltage-clamp technique. <i>Methods in Enzymology</i> , 1998 , 293, 300-18	1.7	127
18	Voltage gating of Shaker K+ channels. The effect of temperature on ionic and gating currents. Journal of General Physiology, 1998 , 112, 223-42	3.4	78
17	Structural implications of fluorescence quenching in the Shaker K+ channel. <i>Journal of General Physiology</i> , 1998 , 112, 391-408	3.4	124
16	Total charge movement per channel. The relation between gating charge displacement and the voltage sensitivity of activation. <i>Journal of General Physiology</i> , 1997 , 109, 27-39	3.4	101
15	Correlation between charge movement and ionic current during slow inactivation in Shaker K+ channels. <i>Journal of General Physiology</i> , 1997 , 110, 579-89	3.4	164
14	Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence. <i>Neuron</i> , 1997 , 19, 1127-40	13.9	295
13	Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel. <i>Neuron</i> , 1997 , 19, 1319-27	13.9	202
12	Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. <i>Neuron</i> , 1996 , 16, 1159-6	5713.9	593
11	Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. <i>Neuron</i> , 1993 , 11, 353-8	13.9	274
10	Voltage Dependent Conductances: Gating Currents and Single Channel Recordings 1991 , 39-56		1
9	Gating currents associated with potassium channel activation. <i>Nature</i> , 1982 , 296, 657-9	50.4	64

LIST OF PUBLICATIONS

8	10. Voltage Clamping of Excitable Membranes. <i>Methods in Experimental Physics</i> , 1982 , 20, 445-511		10	
7	Fluorescence changes during electrical activity in frog muscle stained with merocyanine. <i>Nature</i> , 1976 , 259, 684-6	50.4	34	
6	Charge movement associated with the opening and closing of the activation gates of the Na channels. <i>Journal of General Physiology</i> , 1974 , 63, 533-52	3.4	644	
5	Currents related to movement of the gating particles of the sodium channels. <i>Nature</i> , 1973 , 242, 459-6	150.4	559	
4	Destruction of sodium conductance inactivation in squid axons perfused with pronase. <i>Journal of General Physiology</i> , 1973 , 62, 375-91	3.4	476	
3	Sodium and potassium conductance changes during a membrane action potential. <i>Journal of Physiology</i> , 1970 , 211, 729-51	3.9	47	
2	Time course of the sodium permeability change during a single membrane action potential. <i>Journal of Physiology</i> , 1970 , 211, 753-65	3.9	10	
1	Time course of the sodium influx in squid giant axon during a single voltage clamp pulse. <i>Journal of Physiology</i> , 1970 , 207, 151-64	3.9	21	