Mattias Thelander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5584757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dependence on clade II bHLH transcription factors for nursing of haploid products by tapetalâ€like cells is conserved between moss sporangia and angiosperm anthers. New Phytologist, 2022, 235, 718-731.	7.3	10
2	The <i>Physcomitrium patens</i> egg cell expresses several distinct epigenetic components and utilizes homologues of <i>BONOBO</i> genes for cell specification. New Phytologist, 2022, 233, 2614-2628.	7.3	8
3	Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants. Current Biology, 2022, 32, 3838-3846.e5.	3.9	6
4	Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. New Phytologist, 2021, 229, 845-860.	7.3	24
5	Minimal auxin sensing levels in vegetative moss stem cells revealed by a ratiometric reporter. New Phytologist, 2019, 224, 775-788.	7.3	32
6	Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6463-6472.	7.1	23
7	Auxin-mediated developmental control in the moss Physcomitrella patens. Journal of Experimental Botany, 2018, 69, 277-290.	4.8	69
8	Autophagy is required for gamete differentiation in the moss <i>Physcomitrella patens</i> . Autophagy, 2017, 13, 1939-1951.	9.1	47
9	Directional Auxin Transport Mechanisms in Early Diverging Land Plants. Current Biology, 2014, 24, 2786-2791.	3.9	113
10	The Moss <i>Physcomitrella patens</i> Reproductive Organ Development Is Highly Organized, Affected by the Two <i>SHI/STY</i> Genes and by the Level of Active Auxin in the <i>SHI/STY</i> Expression Domain Â. Plant Physiology, 2013, 162, 1406-1419.	4.8	69
11	Homologues of the <i>Arabidopsis thaliana SHI/STY/LRP1</i> genes control auxin biosynthesis and affect growth and development in the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2010, 137, 1275-1284.	2.5	97
12	The moss genes PpSKI1 and PpSKI2 encode nuclear SnRK1 interacting proteins with homologues in vascular plants. Plant Molecular Biology, 2007, 64, 559-573.	3.9	40
13	Effect of the energy supply on filamentous growth and development in Physcomitrella patens. Journal of Experimental Botany, 2005, 56, 653-662.	4.8	79
14	Snf1-related protein kinase 1 is needed for growth in a normal day–night light cycle. EMBO Journal, 2004, 23, 1900-1910.	7.8	140
15	Cloning by pathway activation in yeast: identification of an Arabidopsis thaliana F-box protein that can turn on glucose repression. Plant Molecular Biology, 2002, 49, 69-79.	3.9	15
16	Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta. Plant Molecular Biology, 2001, 46, 335-346.	3.9	45
17	Carbon and Energy Metabolism. , 0, , 211-245.		4
18	<i>MS1/MMD1</i> homologues in the moss <i>Physcomitrium patens</i> are required for male and female gametogenesis. New Phytologist, 0, , .	7.3	5