
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5584444/publications.pdf Version: 2024-02-01

SVIVIE DUEQUE

#	Article	IF	CITATIONS
1	How Smooth Muscle Contractions Shape the Developing Enteric Nervous System. Frontiers in Cell and Developmental Biology, 2021, 9, 678975.	3.7	8
2	A neural crest cell isotropic-to-nematic phase transition in the developing mammalian gut. Communications Biology, 2021, 4, 770.	4.4	5
3	Extracellular domains of E-cadherin determine key mechanical phenotypes of an epithelium through cell- and non-cell-autonomous outside-in signaling. PLoS ONE, 2021, 16, e0260593.	2.5	1
4	Establishing Primary Cultures of Trunk Neural Crest Cells. Current Protocols in Cell Biology, 2020, 88, e109.	2.3	2
5	ADAR1 mediated regulation of neural crest derived melanocytes and Schwann cell development. Nature Communications, 2020, 11, 198.	12.8	30
6	Mechanical Tension Drives Elongational Growth of the Embryonic Gut. Scientific Reports, 2018, 8, 5995.	3.3	8
7	NRPa-308, a new neuropilin-1 antagonist, exerts inÂvitro anti-angiogenic and anti-proliferative effects and inÂvivo anti-cancerÂeffects in a mouse xenograft model. Cancer Letters, 2018, 414, 88-98.	7.2	29
8	Spontaneous migration of cellular aggregates from giant keratocytes to running spheroids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12926-12931.	7.1	39
9	News from the endothelin-3/EDNRB signaling pathway: Role during enteric nervous system development and involvement in neural crest-associated disorders. Developmental Biology, 2018, 444, S156-S169.	2.0	47
10	ALCAM shedding at the invasive front of the tumor is a marker of myometrial infiltration and promotes invasion in endometrioid endometrial cancer. Oncotarget, 2018, 9, 16648-16664.	1.8	11
11	How gluttonous cell aggregates clear substrates coated with microparticles. Scientific Reports, 2017, 7, 15729.	3.3	4
12	Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses. Brain, Behavior, and Immunity, 2017, 66, 165-176.	4.1	23
13	Activated leukocyte cell adhesion molecule (<scp>ALCAM</scp>) is a marker of recurrence and promotes cell migration, invasion, and metastasis in earlyâ€stage endometrioid endometrial cancer. Journal of Pathology, 2017, 241, 475-487.	4.5	42
14	Emergence and development of gut motility in the chicken embryo. PLoS ONE, 2017, 12, e0172511.	2.5	30
15	Endothelin-3 stimulates cell adhesion and cooperates with β1-integrins during enteric nervous system ontogenesis. Scientific Reports, 2016, 6, 37877.	3.3	11
16	Nanostickers for cells: a model study using cell–nanoparticle hybrid aggregates. Soft Matter, 2016, 12, 7902-7907.	2.7	13
17	How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration. Scientific Reports, 2016, 6, 20927.	3.3	45
18	Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin. Developmental Biology, 2016, 414, 85-99.	2.0	22

#	Article	IF	CITATIONS
19	Measuring the micromechanical properties of embryonic tissues. Methods, 2016, 94, 120-128.	3.8	52
20	\hat{l}^21 -Integrin Function and Interplay during Enteric Nervous System Development. , 2015, , 153-166.		1
21	How cells flow in the spreading of cellular aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8055-8060.	7.1	72
22	Immune-Induced Fever Is Mediated by IL-6 Receptors on Brain Endothelial Cells Coupled to STAT3-Dependent Induction of Brain Endothelial Prostaglandin Synthesis. Journal of Neuroscience, 2014, 34, 15957-15961.	3.6	107
23	Structure-based discovery of a small non-peptidic Neuropilins antagonist exerting in vitro and in vivo anti-tumor activity on breast cancer model. Cancer Letters, 2014, 349, 120-127.	7.2	46
24	Simple rules for a "simple―nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation. Developmental Biology, 2013, 382, 305-319.	2.0	39
25	Sox10 and Itgb1 interaction in enteric neural crest cell migration. Developmental Biology, 2013, 379, 92-106.	2.0	28
26	Detachment and fracture of cellular aggregates. Soft Matter, 2013, 9, 2282.	2.7	22
27	α-Catenin and Vinculin Cooperate to Promote High E-cadherin-based Adhesion Strength. Journal of Biological Chemistry, 2013, 288, 4957-4969.	3.4	155
28	α-catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing. Cell Adhesion and Migration, 2013, 7, 345-350.	2.7	43
29	Biochemical and biophysical origins of cadherin selectivity and adhesion strength. Current Opinion in Cell Biology, 2012, 24, 614-619.	5.4	27
30	E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways. Biophysical Journal, 2012, 103, 175-184.	0.5	48
31	Neuropilin-1 regulates a new VEGF-induced gene, Phactr-1, which controls tubulogenesis and modulates lamellipodial dynamics in human endothelial cells. Cellular Signalling, 2012, 24, 214-223.	3.6	60
32	VGLUT2-dependent glutamatergic transmission in primary afferents is required for intact nociception in both acute and persistent pain modalities. Pain, 2012, 153, 1525-1536.	4.2	41
33	N-cadherin and \hat{l}^21 -integrins cooperate during the development of the enteric nervous system. Developmental Biology, 2012, 364, 178-191.	2.0	40
34	Negative Feedback from Integrins to Cadherins: A Micromechanical Study. Biophysical Journal, 2011, 101, 336-344.	0.5	21
35	Spreading dynamics and wetting transition of cellular aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7315-7320.	7.1	142
36	Mechanosensitive shivering of model tissues under controlled aspiration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13387-13392.	7.1	63

#	Article	IF	CITATIONS
37	Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. Journal of Cell Science, 2010, 123, 712-722.	2.0	130
38	Implication of Metastasis Suppressor <i>NM23-H1</i> in Maintaining Adherens Junctions and Limiting the Invasive Potential of Human Cancer Cells. Cancer Research, 2010, 70, 7710-7722.	0.9	132
39	Epibranchial ganglia orchestrate the development of the cranial neurogenic crest. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2066-2071.	7.1	51
40	Aspiration of Biological Viscoelastic Drops. Physical Review Letters, 2010, 104, 218101.	7.8	215
41	Integrins stimulate E-cadherin-mediated intercellular adhesion by regulating Src-kinase activation and actomyosin contractility. Development (Cambridge), 2010, 137, e1-e1.	2.5	1
42	β1 integrins are required for the invasion of the caecum and proximal hindgut by enteric neural crest cells. Development (Cambridge), 2009, 136, 2791-2801.	2.5	70
43	Synthesis and evaluation of substituted indolizidines as peptidomimetics of RGD tripeptide sequence. Tetrahedron, 2009, 65, 1402-1414.	1.9	7
44	Role of E-Cadherin in Membrane-Cortex Interaction Probed by Nanotube Extrusion. Biophysical Journal, 2009, 96, 2457-2465.	0.5	29
45	Differential regulation of the lateral mobility of plasma membrane phospholipids by the extracellular matrix and cholesterol. Journal of Cellular Physiology, 2008, 215, 550-561.	4.1	4
46	Capns1, a new binding partner of RasGAP-SH3 domain in K-RasV12 oncogenic cells: Modulation of cell survival and migration. Cellular Signalling, 2008, 20, 2119-2126.	3.6	17
47	A RasGAP SH3 Peptide Aptamer Inhibits RasGAP-Aurora Interaction and Induces Caspase-Independent Tumor Cell Death. PLoS ONE, 2008, 3, e2902.	2.5	14
48	Changes in cholesterol levels in the plasma membrane modulate cell signaling and regulate cell adhesion and migration on fibronectin. Cytoskeleton, 2007, 64, 199-216.	4.4	70
49	The Universal Dynamics of Cell Spreading. Current Biology, 2007, 17, 694-699.	3.9	249
50	New transgenic evidence for a system of sympathetic axons able to express tissue plasminogen activator (t-PA) within arterial/arteriolar walls. Blood, 2006, 108, 200-202.	1.4	17
51	Lack of β1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development (Cambridge), 2006, 133, 1725-1734.	2.5	98
52	Prototypical Type I E-cadherin and Type II Cadherin-7 Mediate Very Distinct Adhesiveness through Their Extracellular Domains. Journal of Biological Chemistry, 2006, 281, 2901-2910.	3.4	101
53	Neural crest–derived cells with stem cell features can be traced back to multiple lineages in the adult skin. Journal of Cell Biology, 2006, 175, 1005-1015.	5.2	293
54	Separation Force Measurements Reveal Different Types of Modulation of E-cadherin-based Adhesion by Nectin-1 and -3. Journal of Biological Chemistry, 2005, 280, 4753-4760.	3.4	56

#	Article	IF	CITATIONS
55	Johnson-Kendall-Roberts Theory Applied to Living Cells. Physical Review Letters, 2005, 94, 028102.	7.8	174
56	Conditional β1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system. Development (Cambridge), 2004, 131, 3871-3883.	2.5	64
57	Force measurements in E-cadherin–mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42. Journal of Cell Biology, 2004, 167, 1183-1194.	5.2	372
58	Differential expression of ?3 integrin gene in chick and mouse cranial neural crest cells. Developmental Dynamics, 2003, 227, 309-313.	1.8	17
59	The human tissue plasminogen activator-Cre mouse: a new tool for targeting specifically neural crest cells and their derivatives in vivo. Developmental Biology, 2003, 259, 176-187.	2.0	123
60	Design, synthesis and preliminary biological evaluation of a focused combinatorial library of stereodiverse carbohydrate-scaffold-based peptidomimetics. Bioorganic and Medicinal Chemistry, 2001, 9, 511-523.	3.0	50
61	Differential Function of N-Cadherin and Cadherin-7 in the Control of Embryonic Cell Motility. Journal of Cell Biology, 1999, 146, 501-516.	5.2	61
62	A novel model to study the dorsolateral migration of melanoblasts. Mechanisms of Development, 1999, 89, 3-14.	1.7	26
63	Direct Role of the Carboxy-Terminal Cell-Binding Domain of Fibronectin in Neural Crest Cell Motility. Experimental Cell Research, 1997, 233, 1-10.	2.6	11
64	Changes in the fibronectin-specific integrin expression pattern modify the migratory behavior of sarcoma S180 cells in vitro and in the embryonic environment Journal of Cell Biology, 1995, 128, 699-713.	5.2	53
65	Differential perturbations in the morphogenesis of anterior structures induced by overexpression of truncated XB- and N-cadherins in Xenopus embryos Journal of Cell Biology, 1994, 127, 521-535.	5.2	61
66	E-cadherin expression during the acidic FGF-induced dispersion of a rat bladder carcinoma cell line. Experimental Cell Research, 1992, 201, 347-357.	2.6	63
67	Generation of full-length cDNA recombinant vectors for the transient expression of human fibronectin in mammalian cell lines. Experimental Cell Research, 1991, 193, 331-338.	2.6	20
68	Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload Journal of Clinical Investigation, 1991, 88, 1737-1746.	8.2	101
69	The Instructive Role of Fibronectins in Cell Migrations during Embryonic Development. Annals of the New York Academy of Sciences, 1990, 588, 273-280.	3.8	14
70	Extracellular matrix-cytoskeleton interactions in locomoting embryonic cells. Protoplasma, 1988, 145, 112-119.	2.1	12
71	The role of fibronectins in embryonic cell migrations. Trends in Genetics, 1988, 4, 198-203.	6.7	88
72	The migratory behavior of avian embryonic cells does not require phosphorylation of the fibronectin-receptor complex. FEBS Letters, 1988, 230, 181-185.	2.8	16

#	Article	IF	CITATIONS
73	Adhesion molecules during somitogenesis in the avian embryo Journal of Cell Biology, 1987, 104, 1361-1374.	5.2	272
74	Expression of the cell-binding domain of human fibronectin in E. coli. FEBS Letters, 1987, 213, 261-264.	2.8	34
75	Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. Journal of Cell Biology, 1986, 102, 160-178.	5.2	302
76	Role of a major cell-substratum adhesion system in cell behavior and morphogenesis. Biology of the Cell, 1986, 58, 1-13.	2.0	30