Brynjulf Owren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5584392/publications.pdf

Version: 2024-02-01

257450 265206 62 1,863 24 42 h-index citations g-index papers 63 63 63 730 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lie group integrators for mechanical systems. International Journal of Computer Mathematics, 2022, 99, 58-88.	1.8	9
2	Computational geometric methods for preferential clustering of particle suspensions. Journal of Computational Physics, 2022, 448, 110725.	3.8	3
3	Detecting and determining preserved measures and integrals of birational maps. Journal of Computational Dynamics, 2022, 9, 553-574.	1.1	5
4	Adaptive time stepping for commutator free Lie group integrators. IFAC-PapersOnLine, 2021, 54, 103-107.	0.9	0
5	An integral model based on slender body theory, with applications to curved rigid fibers. Physics of Fluids, 2021, 33, .	4.0	11
6	Structure-preserving deep learning. European Journal of Applied Mathematics, 2021, 32, 888-936.	2.9	17
7	Equivariant neural networks for inverse problems. Inverse Problems, 2021, 37, 085006.	2.0	6
8	Deep learning as optimal control problems. IFAC-PapersOnLine, 2021, 54, 620-623.	0.9	2
9	The Magnus expansion and post-Lie algebras. Mathematics of Computation, 2020, 89, 2785-2799.	2.1	7
10	Variable step size commutator free Lie group integrators. Numerical Algorithms, 2019, 82, 1359-1376.	1.9	4
11	Energy-preserving methods on Riemannian manifolds. Mathematics of Computation, 2019, 89, 699-716.	2.1	9
12	Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 31LT01.	2.1	11
13	Three classes of quadratic vector fields for which the Kahan discretisation is the root of a generalised Manin transformation. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 045204.	2.1	8
14	A novel approach to rigid spheroid models in viscous flows using operator splitting methods. Numerical Algorithms, 2019, 81, 1423-1441.	1.9	3
15	Deep learning as optimal control problems: Models and numerical methods. Journal of Computational Dynamics, 2019, 6, 171-198.	1.1	29
16	Adaptive energy preserving methods for partial differential equations. Advances in Computational Mathematics, 2018, 44, 815-839.	1.6	10
17	Dissipative Numerical Schemes on Riemannian Manifolds with Applications to Gradient Flows. SIAM Journal of Scientific Computing, 2018, 40, A3789-A3806.	2.8	10
18	Lie Group Integrators. Springer Proceedings in Mathematics and Statistics, 2018, , 29-69.	0.2	5

#	Article	IF	CITATIONS
19	Geometric integration of non-autonomous linear Hamiltonian problems. Advances in Computational Mathematics, 2016, 42, 313-332.	1.6	3
20	Discretization of polynomial vector fields by polarization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150390.	2.1	13
21	The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method. Mathematics of Computation, 2014, 83, 1689-1700.	2.1	25
22	Integrability properties of Kahan \hat{E}^{1} 4s method. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 365202.	2.1	28
23	An introduction to Lie group integrators $\hat{a}\in$ basics, new developments and applications. Journal of Computational Physics, 2014, 257, 1040-1061.	3.8	56
24	Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34, 977-990.	0.9	7
25	Geometric properties of Kahan's method. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 025201.	2.1	48
26	Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field―method. Journal of Computational Physics, 2012, 231, 6770-6789.	3.8	198
27	A General Framework for Deriving Integral Preserving Numerical Methods for PDEs. SIAM Journal of Scientific Computing, 2011, 33, 2318-2340.	2.8	87
28	Preserving multiple first integrals by discrete gradients. Journal of Physics A: Mathematical and Theoretical, 2011, 44, 305205.	2.1	31
29	Topics in structure-preserving discretization. Acta Numerica, 2011, 20, 1-119.	10.7	89
30	Energy-Preserving Integrators and the Structure ofÂB-series. Foundations of Computational Mathematics, 2010, 10, 673-693.	2.5	51
31	Energy-preserving Runge-Kutta methods. ESAIM: Mathematical Modelling and Numerical Analysis, 2009, 43, 645-649.	1.9	89
32	Structure of B-series for Some Classes of Geometric Integrators. , 2009, , .		0
33	Plane wave stability of some conservative schemes for the cubic SchrĶdinger equation. ESAIM: Mathematical Modelling and Numerical Analysis, 2009, 43, 677-687.	1.9	15
34	Symmetric Exponential Integrators with an Application to the Cubic SchrĶdinger Equation. Foundations of Computational Mathematics, 2008, 8, 303-317.	2.5	78
35	Multi-symplectic integration of the Camassa–Holm equation. Journal of Computational Physics, 2008, 227, 5492-5512.	3.8	67
36	Order conditions for commutator-free Lie group methods. Journal of Physics A, 2006, 39, 5585-5599.	1.6	22

#	Article	IF	CITATIONS
37	Solving the nonlinear Schr $ ilde{A}\P$ dinger equation using exponential integrators. Modeling, Identification and Control, 2006, 27, 201-218.	1.1	23
38	B-series and Order Conditions for Exponential Integrators. SIAM Journal on Numerical Analysis, 2005, 43, 1715-1727.	2.3	42
39	The behaviour of the local error in splitting methods applied to stiff problems. Journal of Computational Physics, 2004, 195, 576-593.	3.8	16
40	On the Implementation of Lie Group Methods on the Stiefel Manifold. Numerical Algorithms, 2003, 32, 163-183.	1.9	21
41	Cost Efficient Lie Group Integrators in the RKMK Class. BIT Numerical Mathematics, 2003, 43, 723-742.	2.0	11
42	Lie group methods for rigid body dynamics and time integration on manifolds. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 421-438.	6.6	64
43	Commutator-free Lie group methods. Future Generation Computer Systems, 2003, 19, 341-352.	7.5	69
44	A Class of Intrinsic Schemes for Orthogonal Integration. SIAM Journal on Numerical Analysis, 2002, 40, 2069-2084.	2.3	27
45	Integration methods based on canonical coordinates of the second kind. Numerische Mathematik, 2001, 87, 763-790.	1.9	30
46	Quadrature methods based on the Cayley transform. Applied Numerical Mathematics, 2001, 39, 403-413.	2.1	8
47	A Note on the Construction of Crouch-Grossman Methods. BIT Numerical Mathematics, 2001, 41, 207-214.	2.0	8
48	Construction of Runge–Kutta methods of Crouch–Grossman type of high order. Advances in Computational Mathematics, 2000, 13, 405-415.	1.6	16
49	The Newton Iteration on Lie Groups. BIT Numerical Mathematics, 2000, 40, 121-145.	2.0	49
50	Computations in a free Lie algebra. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 957-981.	3.4	124
51	Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames. BIT Numerical Mathematics, 1999, 39, 116-142.	2.0	64
52	Stiffness detection and estimation of dominant spectrum with explicit Runge-Kutta methods. ACM Transactions on Mathematical Software, 1998, 24, 368-382.	2.9	7
53	Pseudospectra of waveform relaxation operators. Computers and Mathematics With Applications, 1998, 36, 67-85.	2.7	9
54	Simulation of ordinary differential equations on manifolds: some numerical experiments and verifications. Modeling, Identification and Control, 1997, 18, 75-88.	1.1	20

#	Article	IF	CITATIONS
55	Nonnormality Effects in a Discretised Nonlinear Reaction-Convection–Diffusion Equation. Journal of Computational Physics, 1996, 124, 309-323.	3.8	4
56	Stability of Runge-Kutta methods used in modular integration. Journal of Computational and Applied Mathematics, 1995, 62, 89-101.	2.0	2
57	Alternative integration methods for problems in structural dynamics. Computer Methods in Applied Mechanics and Engineering, 1995, 122, 1-10.	6.6	43
58	Order barriers and characterizations for continuous mono-implicit Runge-Kutta schemes. Mathematics of Computation, 1993, 61, 675-699.	2.1	15
59	Derivation of Efficient, Continuous, Explicit Runge–Kutta Methods. SIAM Journal on Scientific and Statistical Computing, 1992, 13, 1488-1501.	1.5	78
60	A uniqueness result related to the stability of explicit Runge-Kutta methods. BIT Numerical Mathematics, 1991, 31, 373-374.	2.0	1
61	Order barriers for continuous explicit Runge-Kutta methods. Mathematics of Computation, 1991, 56, 645-661.	2.1	48
62	Some stability results for explicit Runge-Kutta methods. BIT Numerical Mathematics, 1990, 30, 700-706.	2.0	8