Guang-Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5584339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface polarization of BiOI to boost photoelectrochemical signal transduction for high-performance bioassays. Chemical Communications, 2022, 58, 4651-4654.	2.2	3
2	A nickel oxide@nickel–graphene quantum dot self-healing hydrogel for colorimetric detection and removal of lambda-cyhalothrin in kumquat. New Journal of Chemistry, 2022, 46, 9408-9417.	1.4	3
3	Coupling p-Hydroxybenzoate Hydroaxylase with the Photoresponsive Nanozyme for Universal Dehydrogenase-Based Bioassays. Sensors and Actuators B: Chemical, 2021, 327, 128859.	4.0	2
4	Improving the photocatalytic activity of benzyl alcohol oxidation by Z-scheme SnS/g-C ₃ N ₄ . New Journal of Chemistry, 2021, 45, 6611-6617.	1.4	30
5	Label-free and highly sensitive detection of DNA adenine methylation methyltransferase through cathodic photoelectrochemistry. Analyst, The, 2021, 146, 2646-2652.	1.7	2
6	Smart nanozyme of silver hexacyanoferrate with versatile bio-regulated activities for probing different targets. Talanta, 2021, 228, 122268.	2.9	8
7	Methylene blue embedded duplex DNA as an efficient signal stimulator of petal-like BiVO4 for ultrasensitive photoelectrochemical bioassay. Analytica Chimica Acta, 2021, 1182, 338945.	2.6	9
8	The <i>in situ</i> formation of a hole-transporting material on bismuth tungstate for innovative photoelectrochemical aptasensing. Chemical Communications, 2021, 57, 8989-8992.	2.2	4
9	Electrochemical detection of carbendazim in strawberry based on a ruthenium–graphene quantum dot hybrid with a three-dimensional network structure and Schottky heterojunction. New Journal of Chemistry, 2021, 45, 21308-21314.	1.4	9
10	Intercalated doxorubicin acting as stimulator of PbS photocathode for probing DNA–protein interactions. Mikrochimica Acta, 2021, 188, 426.	2.5	1
11	Invoking Cathodic Photoelectrochemistry through a Spontaneously Coordinated Electron Transporter: A Proof of Concept Toward Signal Transduction for Bioanalysis. Analytical Chemistry, 2021, 93, 17119-17126.	3.2	11
12	Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 261, 118233.	10.8	68
13	Versatile enzymatic assays by switching on the fluorescence of gold nanoclusters. Analytica Chimica Acta, 2020, 1095, 219-225.	2.6	5
14	High-throughput photoelectrochemical determination of E. coli O157:H7 by modulation of the anodic photoelectrochemistry of CdS quantum dots via reversible deposition of MnO2. Mikrochimica Acta, 2020, 187, 16.	2.5	5
15	Photo-sensitization of BiOCl by CuInS2 Surface Layer for Photoelectrochemical Cathode. Catalysis Letters, 2020, 150, 1337-1345.	1.4	5
16	Homogenous cathodic photoelectrochemistry for DNA binding protein analysis. Sensors and Actuators B: Chemical, 2020, 324, 128660.	4.0	13
17	p-Type Cu ₂ O as an effective interlayer between CdS and NiO _x cocatalysts to promote photocatalytic hydrogen production. New Journal of Chemistry, 2020, 44, 17719-17723.	1.4	4
18	Establishing Interfacial Charge-Transfer Transitions on Ferroelectric Perovskites: An Efficient Route for Photoelectrochemical Bioanalysis. ACS Sensors, 2020, 5, 3827-3832.	4.0	15

#	Article	IF	CITATIONS
19	Intercalative methylene blue as an efficient signal molecule of tremella-like Bi2WO6: Toward high performance photoelectrochemical biosensing. Sensors and Actuators B: Chemical, 2020, 317, 128210.	4.0	14
20	Immobilization-free, split-mode cathodic photoelectrochemical strategy combined with cascaded amplification for versatile biosensing. Biosensors and Bioelectronics, 2019, 142, 111572.	5.3	9
21	In situ chemical redox and functionalization of graphene oxide: toward new cathodic photoelectrochemical bioanalysis. Chemical Communications, 2019, 55, 10072-10075.	2.2	4
22	Photoswitching enzymatic activity of horseradish peroxidase by graphene oxide for colorimetric immunoassay. Biosensors and Bioelectronics, 2019, 145, 111707.	5.3	26
23	Highly Dispersed and Smallâ€5ized Nickel(II) Hydroxide Co atalyst Prepared by Photodeposition for Hydrogen Production. Chemistry - an Asian Journal, 2019, 14, 4193-4200.	1.7	11
24	NiO nanowires as hole-transfer layer for drastic enhancement of CdSe-sensitized photocathodes. New Journal of Chemistry, 2019, 43, 4075-4081.	1.4	4
25	Ferricyanide stimulated cathodic photoelectrochemistry of flower-like bismuth oxyiodide under ambient air: A general strategy for robust bioanalysis. Sensors and Actuators B: Chemical, 2019, 288, 683-690.	4.0	16
26	Acid Phosphatase Invoked Exquisite Enzyme Cascade for Amplified Colorimetric Bioassay. ACS Sustainable Chemistry and Engineering, 2019, 7, 7572-7579.	3.2	26
27	Enzymatic in situ generation of covalently conjugated electron acceptor of PbSe quantum dots for high throughput and versatile photoelectrochemical bioanalysis. Analytica Chimica Acta, 2019, 1058, 1-8.	2.6	12
28	Pentaethylenehexamine and histidine-functionalized graphene quantum dots for ultrasensitive fluorescence detection of microRNA with target and molecular beacon double cycle amplification strategy. Sensors and Actuators B: Chemical, 2019, 283, 666-676.	4.0	35
29	Switched photoelectrochemistry of carbon dots for split-type immunoassay. Analytica Chimica Acta, 2018, 1014, 19-26.	2.6	17
30	Insight into the Crucial Factors for Photochemical Deposition of Cobalt Cocatalysts on g-C ₃ N ₄ Photocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 9522-9531.	4.0	79
31	A novel strategy for amplified probing versatile biomolecules through a photoswitchable biocatalytic cascade. Sensors and Actuators B: Chemical, 2018, 262, 110-117.	4.0	11
32	Enzyme-Initiated Quinone-Chitosan Conjugation Chemistry: Toward A General <i>in Situ</i> Strategy for High-Throughput Photoelectrochemical Enzymatic Bioanalysis. Analytical Chemistry, 2018, 90, 1492-1497.	3.2	48
33	ITO nanoparticle film as a hole-selective layer for PbS-sensitized photocathodes. New Journal of Chemistry, 2018, 42, 2243-2247.	1.4	3
34	Cathodic photoelectrochemical immunoassay based on glucose-oxidase mediated biocatalysis to inhibit the exciton trapping of cupric ions for PbS quantum dots. Sensors and Actuators B: Chemical, 2018, 266, 408-415.	4.0	21
35	Graphene oxide based photocathode for split photoelectrochemical bioanalysis. Electrochemistry Communications, 2018, 86, 85-89.	2.3	7
36	Tuning surface states to achieve the modulated fluorescence of carbon dots for probing the activity of alkaline phosphatase and immunoassay of α-fetoprotein. Sensors and Actuators B: Chemical, 2018, 257, 620-628.	4.0	36

#	Article	IF	CITATIONS
37	Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine. Analytica Chimica Acta, 2017, 954, 43-51.	2.6	64
38	A General Strategy To Fabricate Ni _{<i>x</i>} P as Highly Efficient Cocatalyst via Photoreduction Deposition for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 6845-6853.	3.2	86
39	Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Applied Catalysis B: Environmental, 2017, 211, 245-251.	10.8	102
40	A novel photoswitchable enzyme cascade for powerful signal amplification in versatile bioassays. Chemical Communications, 2017, 53, 11165-11168.	2.2	25
41	In Situ Enzymatically Generated Photoswitchable Oxidase Mimetics and Their Application for Colorimetric Detection of Glucose Oxidase. Molecules, 2016, 21, 902.	1.7	7
42	Native carbon nanodots as a fluorescent probe for assays based on the use of glucose oxidase or horseradish peroxidase. Mikrochimica Acta, 2016, 183, 2761-2770.	2.5	14
43	Split photoelectrochemistry for the immunoassay of α-fetoprotein based on graphitic carbon nitride. Journal of Electroanalytical Chemistry, 2016, 783, 226-232.	1.9	13
44	Light-assisted rapid preparation of a Ni/g-C ₃ N ₄ magnetic composite for robust photocatalytic H ₂ evolution from water. Journal of Materials Chemistry A, 2016, 4, 9998-10007.	5.2	181
45	A novel g-C ₃ N ₄ based photocathode for photoelectrochemical hydrogen evolution. RSC Advances, 2016, 6, 7465-7473.	1.7	30
46	Colorimetric determination of melamine based on the reversal of the mercury(II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Mikrochimica Acta, 2016, 183, 441-448.	2.5	34
47	Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Mikrochimica Acta, 2016, 183, 765-771.	2.5	16
48	Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme. Biosensors and Bioelectronics, 2016, 81, 214-220.	5.3	35
49	Switchable fluorescence of gold nanoclusters for probing the activity of alkaline phosphatase and its application in immunoassay. Biosensors and Bioelectronics, 2016, 77, 666-672.	5.3	84
50	Efficient and Stable MoS ₂ /CdSe/NiO Photocathode for Photoelectrochemical Hydrogen Generation from Water. Chemistry - an Asian Journal, 2015, 10, 1660-1667.	1.7	31
51	AgBi(WO ₄) ₂ : A New Modification Material to Bi ₂ WO ₆ for Enhanced and Stable Visible‣ight Photocatalyic Performance. Chemistry - an Asian Journal, 2015, 10, 1948-1952.	1.7	2
52	A novel photoelectrochemical sensor based on photocathode of PbS quantum dots utilizing catalase mimetics of bio-bar-coded platinum nanoparticles/G-quadruplex/hemin for signal amplification. Biosensors and Bioelectronics, 2015, 69, 106-112.	5.3	83
53	Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters. Analytica Chimica Acta, 2015, 871, 1-8.	2.6	85
54	Using G-Quadruplex/Hemin To "Switch-On―the Cathodic Photocurrent of p-Type PbS Quantum Dots: Toward a Versatile Platform for Photoelectrochemical Aptasensing. Analytical Chemistry, 2015, 87, 2892-2900.	3.2	152

#	Article	IF	CITATIONS
55	Superior peroxidase mimetic activity of carbon dots–Pt nanocomposites relies on synergistic effects. New Journal of Chemistry, 2015, 39, 4141-4146.	1.4	52
56	Light-Assisted Preparation of a ZnO/CdS Nanocomposite for Enhanced Photocatalytic H ₂ Evolution: An Insight into Importance of in Situ Generated ZnS. ACS Sustainable Chemistry and Engineering, 2015, 3, 969-977.	3.2	154
57	In situ light-assisted preparation of MoS ₂ on graphitic C ₃ N ₄ nanosheets for enhanced photocatalytic H ₂ production from water. Journal of Materials Chemistry A, 2015, 3, 7375-7381.	5.2	274
58	Highly Dispersed CeO ₂ on TiO ₂ Nanotube: A Synergistic Nanocomposite with Superior Peroxidase-Like Activity. ACS Applied Materials & Interfaces, 2015, 7, 6451-6461.	4.0	257
59	Novel photoelectrochemical hydrogen peroxide sensor based on hemin sensitized nanoporous NiO based photocathode. Journal of Electroanalytical Chemistry, 2015, 759, 27-31.	1.9	31
60	Versatile and Amplified Biosensing through Enzymatic Cascade Reaction by Coupling Alkaline Phosphatase <i>in Situ</i> Generation of Photoresponsive Nanozyme. Analytical Chemistry, 2015, 87, 10429-10436.	3.2	158
61	Efficient Photoelectrochemical Hydrogen Generation from Water Using a Robust Photocathode Formed by CdTe QDs and Nickel Ion. ACS Sustainable Chemistry and Engineering, 2015, 3, 2429-2434.	3.2	45
62	Photoelectrochemical aptasensing of lead(II) ion based on the in situ generation of photosensitizer of a self-operating photocathode. Electrochemistry Communications, 2015, 61, 117-120.	2.3	25
63	An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification. Biosensors and Bioelectronics, 2015, 66, 283-289.	5.3	51
64	Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosensors and Bioelectronics, 2015, 64, 523-529.	5.3	170
65	Visible-Light-Stimulated Enzymelike Activity of Graphene Oxide and Its Application for Facile Glucose Sensing. Journal of Physical Chemistry C, 2014, 118, 28109-28117.	1.5	70
66	A novel strategy for the construction of photoelectrochemical sensors based on quantum dots and electron acceptor: The case of dopamine detection. Electrochemistry Communications, 2014, 41, 47-50.	2.3	69
67	Simple one-pot synthesis of ZnO/Ag heterostructures and the application in visible-light-responsive photocatalysis. RSC Advances, 2014, 4, 7340-7346.	1.7	45
68	Simple hydrothermal preparation of α-, β-, and γ-MnO ₂ and phase sensitivity in catalytic ozonation. RSC Advances, 2014, 4, 39167.	1.7	83
69	Mercury(ii)-stimulated oxidase mimetic activity of silver nanoparticles as a sensitive and selective mercury(ii) sensor. RSC Advances, 2014, 4, 5867.	1.7	55
70	An insight into the kinetics and interface sensitivity for catalytic ozonation: the case of nano-sized NiFe ₂ O ₄ . Catalysis Science and Technology, 2014, 4, 494-501.	2.1	54
71	Dual Responsive Enzyme Mimicking Activity of AgX (X = Cl, Br, I) Nanoparticles and Its Application for Cancer Cell Detection. ACS Applied Materials & Amp; Interfaces, 2014, 6, 6434-6442.	4.0	118
72	Quantum dots-based glucose sensing through fluorescence quenching by bienzyme-catalyzed chromogenic substrate oxidation. Sensors and Actuators B: Chemical, 2014, 205, 61-66.	4.0	24

#	Article	IF	CITATIONS
73	A new approach to light up the application of semiconductor nanomaterials for photoelectrochemical biosensors: Using self-operating photocathode as a highly selective enzyme sensor. Biosensors and Bioelectronics, 2014, 62, 66-72.	5.3	103
74	In situ formation of p–n junction: A novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection. Analytica Chimica Acta, 2014, 827, 34-39.	2.6	45
75	An α-MnO ₂ nanotube used as a novel catalyst in ozonation: performance and the mechanism. New Journal of Chemistry, 2014, 38, 1743-1750.	1.4	80
76	Novel switchable sensor for phosphate based on the distance-dependant fluorescence coupling of cysteine-capped cadmium sulfide quantum dots and silver nanoparticles. Analyst, The, 2013, 138, 2000.	1.7	21
77	The pH-dependent interaction of silver nanoparticles and hydrogen peroxide: A new platform for visual detection of iodide with ultra-sensitivity. Talanta, 2013, 107, 146-153.	2.9	59
78	Enhanced fluorescence sensing of melamine based on thioglycolic acid-capped CdS quantum dots. Talanta, 2012, 93, 398-403.	2.9	80
79	"Oxidative etching-aggregation―of silver nanoparticles by melamine and electron acceptors: An innovative route toward ultrasensitive and versatile functional colorimetric sensors. Analytica Chimica Acta, 2012, 747, 92-98.	2.6	27
80	Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosensors and Bioelectronics, 2012, 31, 337-342.	5.3	127
81	Metal ion (silver, cadmium and zinc ions) modified CdS quantum dots for ultrasensitive copper ion sensing. Nanotechnology, 2011, 22, 085503.	1.3	24
82	Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots. Talanta, 2011, 83, 943-947.	2.9	64
83	Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes. Analyst, The, 2011, 136, 5256.	1.7	55
84	Selective detection of trace amount of Cu2+ using semiconductor nanoparticles in photoelectrochemical analysis. Nanoscale, 2010, 2, 1112.	2.8	119
85	Progress in the studies of photoelectrochemical sensors. Science in China Series B: Chemistry, 2009, 52, 1789-1800.	0.8	81
86	Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation. Biosensors and Bioelectronics, 2009, 24, 2494-2498.	5.3	148
87	Label-free photoelectrochemical immunoassay for α-fetoprotein detection based on TiO2/CdS hybrid. Biosensors and Bioelectronics, 2009, 25, 791-796.	5.3	235
88	A Label-Free Photoelectrochemical Immunosensor Based on Water-Soluble CdS Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 11142-11148.	1.5	224