Erik S Carlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5584316/publications.pdf

Version: 2024-02-01

20 papers 1,181 citations

15 h-index 18 g-index

20 all docs

20 docs citations

 $\begin{array}{c} 20 \\ times \ ranked \end{array}$

1155 citing authors

#	Article	IF	CITATIONS
1	The Role of Iron in Learning and Memory. Advances in Nutrition, 2011, 2, 112-121.	2.9	193
2	Iron Is Essential for Neuron Development and Memory Function in Mouse Hippocampus. Journal of Nutrition, 2009, 139, 672-679.	1.3	159
3	Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus, 2007, 17, 679-691.	0.9	123
4	Long-Term Reduction of Hippocampal Brain-Derived Neurotrophic Factor Activity After Fetal-Neonatal Iron Deficiency in Adult Rats. Pediatric Research, 2009, 65, 493-498.	1.1	102
5	Gestational and Neonatal Iron Deficiency Alters Apical Dendrite Structure of CA1 Pyramidal Neurons in Adult Rat Hippocampus. Developmental Neuroscience, 2010, 32, 238-248.	1.0	100
6	Temporal manipulation of transferrinâ€receptorâ€1â€dependent iron uptake identifies a sensitive period in mouse hippocampal neurodevelopment. Hippocampus, 2012, 22, 1691-1702.	0.9	84
7	Early-Life Iron Deficiency Anemia Alters Neurotrophic Factor Expression and Hippocampal Neuron Differentiation in Male Rats2. Journal of Nutrition, 2008, 138, 2495-2501.	1.3	76
8	Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiology of Learning and Memory, 2020, 170, 106981.	1.0	64
9	Dopamine D1 Receptor–Positive Neurons in the Lateral Nucleus of the Cerebellum Contribute to Cognitive Behavior. Biological Psychiatry, 2018, 84, 401-412.	0.7	60
10	Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. Journal of Neurodevelopmental Disorders, 2010, 2, 133-143.	1.5	51
11	Iron deficiency alters expression of genes implicated in Alzheimer disease pathogenesis. Brain Research, 2008, 1237, 75-83.	1.1	37
12	Neuronal-Specific Iron Deficiency Dysregulates Mammalian Target of Rapamycin Signaling during Hippocampal Development in Nonanemic Genetic Mouse Models. Journal of Nutrition, 2013, 143, 260-266.	1.3	32
13	Purkinje Cell-Specific Knockout of Tyrosine Hydroxylase Impairs Cognitive Behaviors. Frontiers in Cellular Neuroscience, 2020, 14, 228.	1.8	27
14	Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Development and Psychopathology, 2018, 30, 1063-1086.	1.4	24
15	Structural and thermodynamic studies of simple aldose reductase–inhibitor complexes. Bioorganic Chemistry, 2006, 34, 424-444.	2.0	19
16	Catecholaminergic Innervation of the Lateral Nucleus of the Cerebellum Modulates Cognitive Behaviors. Journal of Neuroscience, 2021, 41, 3512-3530.	1.7	15
17	Chronic elevation of plasma vascular endothelial growth factor-A (VEGF-A) is associated with a history of blast exposure. Journal of the Neurological Sciences, 2020, 417, 117049.	0.3	9
18	Cerebellar D1DR-expressing neurons modulate the frontal cortex during timing tasks. Neurobiology of Learning and Memory, 2020, 170, 107067.	1.0	6

#	Article	IF	CITATIONS
19	T38. Genetic Dissection of Catecholaminergic Innervation of the Cognitive Cerebellum. Biological Psychiatry, 2019, 85, S143-S144.	0.7	O
20	Catecholamine signaling that modulates cerebellar operations in cognition. Neuropsychopharmacology, 2021, 46, 248-249.	2.8	0