List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5583857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypothermia differentially modulates the formation and decay of NBS1, γH2AX and 53BP1 foci in U2OS cells exposed to gamma radiation. Scientific Reports, 2022, 12, 5878.	1.6	1
2	Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy—Part II. Toxicity, Pharmacokinetics and Biodistribution. International Journal of Molecular Sciences, 2021, 22, 5702.	1.8	8
3	Coralyne Radiosensitizes A549 Cells by Upregulation of CDKN1A Expression to Attenuate Radiation Induced G2/M Block of the Cell Cycle. International Journal of Molecular Sciences, 2021, 22, 5791.	1.8	4
4	Cisplatin Reduces the Frequencies of Radiotherapy-Induced Micronuclei in Peripheral Blood Lymphocytes of Patients with Gynaecological Cancer: Possible Implications for the Risk of Second Malignant Neoplasms. Cells, 2021, 10, 2709.	1.8	3
5	Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy–Part I. Materials, 2020, 13, 3875.	1.3	20
6	Targeted Radionuclide Therapy of Prostate Cancer—From Basic Research to Clinical Perspectives. Molecules, 2020, 25, 1743.	1.7	61
7	Selective cytotoxicity and antifungal properties of copper(II) and cobalt(II) complexes with imidazole-4-acetate anion or 1-allylimidazole. Scientific Reports, 2019, 9, 9777.	1.6	31
8	Lung effects of 7- and 28-day inhalation exposure of rats to emissions from 1st and 2nd generation biodiesel fuels with and without particle filter – The FuelHealth project. Environmental Toxicology and Pharmacology, 2019, 67, 8-20.	2.0	19
9	Biological effects of mixed-ion beams. Part 2: The relative biological effectiveness of CHO-K1 cells irradiated by mixed- and single-ion beams. Applied Radiation and Isotopes, 2019, 150, 192-198.	0.7	0
10	Hypothermia modulates the DNA damage response to ionizing radiation in human peripheral blood lymphocytes. International Journal of Radiation Biology, 2018, 94, 551-557.	1.0	14
11	Silver ions are responsible for memory impairment induced by oral administration of silver nanoparticles. Toxicology Letters, 2018, 290, 133-144.	0.4	40
12	Gene expression changes in rat brain regions after 7- and 28 days inhalation exposure to exhaust emissions from 1st and 2nd generation biodiesel fuels - The FuelHealth project. Inhalation Toxicology, 2018, 30, 299-312.	0.8	17
13	Synthesis, physicochemical and biological characterization of Ni(II) complex with imidazole-4-acetate anion as new antifungal agent. Journal of Chemical Sciences, 2018, 130, 1.	0.7	4
14	ANTIOXIDANT DEFENSE PARAMETERS IN TESTES OF ADULT MALE RATS AFTER EXPOSURE TO EXHAUST EMISSION FROM 2ND GENERATION BIODIESEL. Pathophysiology, 2018, 25, 243.	1.0	0
15	Fullerenol C60(OH)36 protects human erythrocyte membrane against high-energy electrons. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1528-1536.	1.4	20
16	The effects of 1st and 2nd generation biodiesel exhaust exposure on hematological and biochemical blood indices of Fisher344 male rats – The FuelHealth project. Environmental Toxicology and Pharmacology, 2018, 63, 34-47.	2.0	10
17	Biological effects of mixed-ion beams. Part 1: Effect of irradiation of the CHO-K1 cells with a mixed-ion beam containing the carbon and oxygen ions. Applied Radiation and Isotopes, 2018, 139, 304-309.	0.7	2
18	Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells—The FuelHealth project. Environmental Toxicology and Pharmacology. 2017. 52. 138-142.	2.0	31

#	Article	IF	CITATIONS
19	Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels—the FuelHealth project. Environmental Science and Pollution Research, 2017, 24, 24223-24234.	2.7	29
20	No adverse lung effects of 7- and 28-day inhalation exposure of rats to emissions from petrodiesel fuel containing 20% rapeseed methyl esters (B20) with and without particulate filter – the FuelHealth project. Inhalation Toxicology, 2017, 29, 206-218.	0.8	16
21	A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties—the FuelHealth project. Environmental Science and Pollution Research, 2017, 24, 19357-19374.	2.7	36
22	Chemical Characterization of Exhaust Gases from Compression Ignition Engine Fuelled with Various Biofuels. Polish Journal of Environmental Studies, 2017, 26, 1183-1190.	0.6	8
23	Comparative analysis of toxicity of diesel engine particles generated from the combustion of 1st and 2nd generation biodiesel fuels in vitro. Toxicology Letters, 2016, 259, S73.	0.4	0
24	The changes in hematological profile of adult male rats after exposure to diesel exhaust emission. Toxicology Letters, 2016, 258, S182.	0.4	0
25	Inhalation of diesel engine exhaust from combustion of 1st generation biodiesel fuel (B20) affects endocrine regulation of reproduction in male rats. Toxicology Letters, 2016, 258, S182.	0.4	1
26	Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats. Toxicology and Applied Pharmacology, 2016, 313, 35-46.	1.3	34
27	Modification biological activity of S and R forms of Proteus mirabilis and Burkholderia cepacia lipopolysaccharides by carrageenans. Carbohydrate Polymers, 2016, 149, 408-414.	5.1	2
28	Evaluating the toxicity of selected types of carbon nanomaterials in vitro. Toxicology Letters, 2015, 238, S202.	0.4	0
29	The effects of nickel(II) complexes with imidazole derivatives on pyocyanin and pyoverdine production by Pseudomonas aeruginosa strains isolated from cystic fibrosis. Acta Biochimica Polonica, 2015, 62, 739-745.	0.3	6
30	Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 404-408.	0.6	1
31	Heavy Ion Beams for Radiobiology: Dosimetry and Nanodosimetry at HIL. Acta Physica Polonica A, 2015, 127, 1516-1519.	0.2	2
32	Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin–angiotensin system in brain. Food and Chemical Toxicology, 2015, 85, 96-105.	1.8	40
33	Defining Blood Processing Parameters for Optimal Detection of γ-H2AX Foci: A Small Blood Volume Method. Radiation Research, 2015, 184, 95-104.	0.7	9
34	Modulation of radiation-induced cytogenetic damage in human peripheral blood lymphocytes by hypothermia. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 793, 96-100.	0.9	9
35	Searching for in vitro biomarkers of susceptibility to prostate and cervical cancers by analysis of chromosomal instability, γ-H2AX foci, polymorphisms in DNA repair genes and apoptosis. Journal of Pre-Clinical and Clinical Research, 2015, 9, 97-104.	0.2	0
36	Effect of hypothermia on radiation-induced micronuclei and delay of cell cycle progression in TK6 cells. International Journal of Radiation Biology, 2014, 90, 318-324.	1.0	14

#	Article	IF	CITATIONS
37	Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology, 2014, 315, 86-91.	2.0	123
38	Investigation of the bystander effect in CHO-K1 cells. Reports of Practical Oncology and Radiotherapy, 2014, 19, S37-S41.	0.3	5
39	Analysis of the Biological Response in {CHO-K1} Cells to High LET Radiation. Acta Physica Polonica B, 2014, 45, 553.	0.3	1
40	Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes <i>in vitro</i> . Nanotoxicology, 2013, 7, 235-250.	1.6	83
41	Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS. Nanotoxicology, 2013, 7, 1168-1178.	1.6	53
42	Individual variations in the micronucleus assay for biological dosimetry after high dose exposure. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2013, 756, 196-200.	0.9	14
43	The dose-response relationship for dicentric chromosomes and Î ³ -H2AX foci in human peripheral blood lymphocytes: Influence of temperature during exposure and intra- and inter-individual variability of donors. International Journal of Radiation Biology, 2013, 89, 191-199.	1.0	16
44	The properties of chitosan complexes with smooth and rough forms of lipopolysaccharides on CHO-K1 cells. Carbohydrate Polymers, 2013, 97, 284-292.	5.1	7
45	Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicology Letters, 2013, 219, 151-159.	0.4	58
46	Effects on DNA and cell viability of treated water contaminated with Cylindrospermopsis raciborskii extract including cylindrospermopsin. Journal of the Brazilian Society of Ecotoxicology, 2013, 8, 135-141.	0.3	1
47	Silver nanoparticles allies or adversaries?. Annals of Agricultural and Environmental Medicine, 2013, 20, 48-54.	0.5	56
48	Effects of Saponins against Clinical <i>E. coli</i> Strains and Eukaryotic Cell Line. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-6.	3.0	68
49	Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis, 2012, 27, 759-769.	1.0	43
50	The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicology Letters, 2012, 208, 197-213.	0.4	207
51	Silver nanoparticles effects on epididymal sperm in rats. Toxicology Letters, 2012, 214, 251-258.	0.4	143
52	Clinical Investigations Comparative analysis of three functional predictive assays in lymphocytes of patients with breast and gynaecological cancer treated by radiotherapy. Journal of Contemporary Brachytherapy, 2012, 4, 219-226.	0.4	11
53	Timeâ€dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. Journal of Applied Toxicology, 2012, 32, 920-928.	1.4	194
54	Toxicity of Silver Nanomaterials in Higher Eukaryotes. Advances in Molecular Toxicology, 2011, 5, 179-218.	0.4	82

#	Article	IF	CITATIONS
55	FociCounter: A freely available PC programme for quantitative and qualitative analysis of gamma-H2AX foci. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 696, 16-20.	0.9	61
56	The effects of silver nanoparticles on male rats sperm quantity and quality. Toxicology Letters, 2010, 196, S285-S286.	0.4	0
57	Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions. Applied Radiation and Isotopes, 2009, 67, 447-453.	0.7	6
58	Nucleotide excision repair impairment by nodularin in CHO cell lines due to ERCC1/XPF inactivation. Toxicology Letters, 2008, 179, 101-107.	0.4	17
59	Biological effectiveness of12C and20Ne ions with very high LET. International Journal of Radiation Biology, 2008, 84, 821-829.	1.0	15
60	Chromosomal Radiosensitivity, DNA repair, SNP and Apoptosis in Lymphocytes of Cervix Cancer Patients. Radioprotection, 2008, 43, .	0.5	0
61	Validation of the micronucleus assay for biological dosimetry after high dose exposure. Radioprotection, 2008, 43, .	0.5	0
62	Radiation-induced micronucleus frequencies in female peripheral blood lymphocytes collected during the first and second half of the menstrual cycle. Radiation Protection Dosimetry, 2007, 123, 483-489.	0.4	1
63	Lifespan of etoposide-treated human neutrophils is affected by antioxidant ability of quercetin. Toxicology in Vitro, 2007, 21, 1020-1030.	1.1	33
64	No induction of structural chromosomal aberrations in cylindrospermopsin-treated CHO-K1 cells without and with metabolic activation. Toxicon, 2007, 50, 1105-1115.	0.8	48
65	A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicology Letters, 2006, 161, 27-36.	0.4	113
66	Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicology Letters, 2006, 164, 239-248.	0.4	34
67	Inhibition of nucleotide excision repair (NER) by microcystin-LR in CHO-K1 cells. Toxicon, 2006, 48, 957-965.	0.8	34
68	Enhanced chromosomal radiosensitivity in peripheral blood lymphocytes of larynx cancer patients. International Journal of Radiation Oncology Biology Physics, 2006, 66, 1245-1252.	0.4	20
69	DNA interstrand crosslinks are induced in cells prelabelled with 5-bromo-2′-deoxyuridine and exposed to UVC radiation. Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 15-20.	1.7	17
70	The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor. Mutagenesis, 2006, 21, 83-90.	1.0	46
71	Cytogenetic damage in lymphocytes of patients undergoing therapy for small cell lung cancer and ovarian carcinoma. Toxicology and Applied Pharmacology, 2005, 209, 183-191.	1.3	25
72	Aluminum-induced micronuclei and apoptosis in human peripheral-blood lymphocytes treated during different phases of the cell cycle. Environmental Toxicology, 2005, 20, 402-406.	2.1	96

#	Article	IF	CITATIONS
73	The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro. Toxicology, 2004, 204, 23-40.	2.0	64
74	DNA damage and repair in human peripheral blood lymphocytes following treatment with microcystin-LR. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2004, 559, 131-142.	0.9	68
75	Effect of microcystin-LR and cyanobacterial extract from polish reservoir of drinking water on cell cycle progression, mitotic spindle, and apoptosis in CHO-K1 cells. Toxicology and Applied Pharmacology, 2003, 189, 204-213.	1.3	63
76	A cross-platform public domain PC image-analysis program for the comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 534, 15-20.	0.9	640
77	Protective effect of melatonin against nodularin-induced oxidative stress in mouse liver. Archives of Toxicology, 2002, 76, 158-165.	1.9	43
78	Influence of microcystin-YR and nodularin on the activity of some proteolytic enzymes in mouse liver. Toxicon, 2001, 39, 419-423.	0.8	26
79	Influence of microcystine–YR and nodularin on the activity of some glucosidases in mouse liver. Toxicology, 2000, 146, 177-185.	2.0	7