Min Sup Hur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5583533/publications.pdf Version: 2024-02-01

MIN SUD HUD

#	Article	IF	CITATIONS
1	Terahertz emission from a plasma dipole oscillation. Journal of the Korean Physical Society, 2022, 80, 852-858.	0.7	2
2	Review of laser-plasma physics research and applications in Korea. Journal of the Korean Physical Society, 2022, 80, 698-716.	0.7	2
3	Coherent terahertz radiation generation by a flattened Gaussian laser beam at a plasma–vacuum interface. Applied Physics B: Lasers and Optics, 2022, 128, 1.	2.2	8
4	Particle-in-cell simulations of THz emission from plasma by oblique collision of two-electron beams. Physics of Plasmas, 2022, 29, .	1.9	3
5	Simulation study of phase-matched THz emission from an axially modulated magnetized plasma. Physics of Plasmas, 2021, 28, .	1.9	8
6	Radiation emitter generated by interacting Langmuir waves. , 2021, , .		1
7	Radiation reaction and the acceleration-dependent mass increase of a charged sphere undergoing uniform acceleration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 407, 127445.	2.1	1
8	Effects of a shallow SAS divertor on detachment in KSTAR. Nuclear Fusion, 2021, 61, 014001.	3.5	0
9	Evolution of magnetic field in a weakly relativistic counterstreaming inhomogeneous eâ^'/e+ plasmas. Laser and Particle Beams, 2020, 38, 181-187.	1.0	1
10	Reconstruction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipoles. Plasma Sources Science and Technology, 2020, 29, 025018.	3.1	3
11	Particle-in-cell simulation of plasma-based amplification using a moving window. Physical Review Research, 2020, 2, .	3.6	6
12	Unstable longitudinal expansion of plasma foils accelerated by circularly polarized laser pulses in non-transparent regimes. Physics of Plasmas, 2019, 26, 103104.	1.9	0
13	Enhanced betatron radiation by a modulating laser pulse in laser wakefield acceleration. Current Applied Physics, 2019, 19, 464-469.	2.4	3
14	A laser-plasma accelerator driven by two-color relativistic femtosecond laser pulses. Science Advances, 2019, 5, eaav7940.	10.3	23
15	Envelope-PIC Hybrid Method for the Simulation of Microwave Reflectometry. IEEE Transactions on Plasma Science, 2018, 46, 577-582.	1.3	1
16	High-Energy, Short-Duration Bursts of Coherent Terahertz Radiation from an Embedded Plasma Dipole. Scientific Reports, 2018, 8, 145.	3.3	35
17	An ultra-high gain and efficient amplifier based on Raman amplification in plasma. Scientific Reports, 2017, 7, 2399.	3.3	44
18	Analyzing the effect of slotted foil on radiation pulse profile in a mode locked afterburner X-ray free electron laser. Journal of Applied Physics, 2017, 121, 243101.	2.5	2

MIN SUP HUR

#	Article	IF	CITATIONS
19	Large-scale magnetic field generation by asymmetric laser-pulse interactions with a plasma in low-intensity regime. Journal of Applied Physics, 2016, 119, .	2.5	10
20	Effects of laser polarizations on shock generation and shock ion acceleration in overdense plasmas. Physical Review E, 2016, 94, 033211.	2.1	2
21	Violation of the transit-time limit toward generation of ultrashort electron bunches with controlled velocity chirp. Scientific Reports, 2016, 6, 32567.	3.3	7
22	Chirped pulse Raman amplification in warm plasma: towards controlling saturation. Scientific Reports, 2015, 5, 13333.	3.3	28
23	Raman backscattering saturation due to coupling betweenï‰pand 2ï‰pmodes in plasma. New Journal of Physics, 2015, 17, 103026.	2.9	3
24	Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 700-704.	2.1	2
25	Control of the charge and energy of the proton beams from a laser-driven double-layer target. Current Applied Physics, 2015, 15, 892-896.	2.4	0
26	Strong terahertz emission from electromagnetic diffusion near cutoff in plasma. New Journal of Physics, 2015, 17, 043045.	2.9	37
27	Onset of stimulated Raman scattering of a laser in a plasma in the presence of hot drifting electrons. Physics of Plasmas, 2015, 22, 052101.	1.9	13
28	Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target. Physical Review E, 2015, 92, 043102.	2.1	19
29	Measuring the magnetic field of a magnetized plasma using Raman scattering. Applied Physics Letters, 2014, 104, 141107.	3.3	6
30	Large transverse motion and micro-bunching of trapped electrons in a wakefield accelerator driven by temporally-asymmetric laser pulses. Current Applied Physics, 2013, 13, 645-651.	2.4	2
31	Plasma density measurements using chirped pulse broad-band Raman amplification. Applied Physics Letters, 2013, 103, .	3.3	9
32	Relativistic channeling of a linearly polarized laser pulse in overdense plasma. Laser and Particle Beams, 2012, 30, 465-471.	1.0	3
33	Feasibility study of the plasma electron density measurement by electromagnetic radiation from the laser-driven plasma wave. Journal of Instrumentation, 2012, 7, C04010-C04010.	1.2	0
34	Relativistic terahertz pulse generation by non-linear interaction of a high-power fs laser with underdense plasmas. Journal Physics D: Applied Physics, 2012, 45, 395201.	2.8	4
35	Controlling the spectrum of high-power terahertz radiation from a laser-driven plasma wave. Current Applied Physics, 2012, 12, 1252-1255.	2.4	1
36	Two-dimensional simulations of the amplification and focusing of intense laser pulses in the kinetic regime of Raman backward amplification in plasmas. Computer Physics Communications, 2009, 180, 651-655.	7.5	6

MIN SUP HUR

#	Article	IF	CITATIONS
37	Guiding of an electromagnetic pulse in a plasma immersed in combined wiggler and axial magnetic fields. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 3452-3455.	2.1	2
38	Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2684-2687.	2.1	37
39	Investigation of the Optimal Condition for High Acceleration Efficiency in the Laser Wake-Field Acceleration. Journal of the Korean Physical Society, 2008, 52, 293-299.	0.7	0
40	Pulse width effects on Raman backward laser amplification. Journal Physics D: Applied Physics, 2007, 40, 5155-5160.	2.8	10
41	Simulation for generation of 15fs laser pulses by Raman backscatter in plasmas. Applied Physics Letters, 2007, 91, 101501.	3.3	6
42	Flying mirror model for interaction of a super-intense laser pulse with a thin plasma layer: Transparency and shaping of linearly polarized laser pulses. Physics of Plasmas, 2007, 14, 113102.	1.9	7
43	Flying mirror model for interaction of a super-intense nonadiabatic laser pulse with a thin plasma layer: Dynamics of electrons in a linearly polarized external field. Physics of Plasmas, 2007, 14, 113101.	1.9	37
44	Theoretical Investigation of Controlled Generation of a Dense Attosecond Relativistic Electron Bunch from the Interaction of an Ultrashort Laser Pulse with a Nanofilm. Physical Review Letters, 2007, 99, 124801.	7.8	92
45	Realistic laser focusing effect on electron acceleration in the presence of a pulsed magnetic field. Applied Physics Letters, 2007, 91, .	3.3	17
46	New envelope-kinetic scheme for the simulation of Raman backward laser amplification. Computer Physics Communications, 2007, 177, 68-69.	7.5	1
47	Test particle method for incorporation of the kinetic effects into the envelope simulations of Raman backscattering. Journal of Computational Physics, 2007, 226, 2133-2145.	3.8	4
48	Plasma Channel Generation for Electron Acceleration with a Laser-Induced Density Gradient. Journal of the Korean Physical Society, 2007, 50, 1466.	0.7	10
49	Envelope-Kinetic Method for the Simulation of Raman Backward Laser Amplification in a Plasma. Journal of the Korean Physical Society, 2007, 50, 1463.	0.7	0
50	Attosecond Relativistic Electron Beam by Using an Ultrashort Laser Pulse and a Thin Plasma Layer. Journal of the Korean Physical Society, 2007, 50, 1471.	0.7	0
51	Energy exchange during stimulated Raman scattering of a relativistic laser in a plasma. Journal of Applied Physics, 2006, 100, 103101.	2.5	20
52	Compression and microbunching of electron beams by ultra-intense laser pulses. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 353, 505-511.	2.1	3
53	Electron Kinetic Effects on Raman Backscatter in Plasmas. Physical Review Letters, 2005, 95, 115003.	7.8	47
54	Reaching the Nonlinear Regime of Raman Amplification of Ultrashort Laser Pulses. Physical Review Letters, 2005, 94, 045003.	7.8	137

MIN SUP HUR

#	Article	IF	CITATIONS
55	Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering. Physics of Plasmas, 2004, 11, 5204-5211.	1.9	21
56	Simulation of electromagnetically and magnetically induced transparency in a magnetized plasma. Physics of Plasmas, 2003, 10, 3004-3011.	1.9	24
57	Three-dimensional fluid simulation of a plasma display panel cell. Journal of Applied Physics, 2002, 91, 9513.	2.5	52
58	Particle-in-cell simulation of a neutral beam source for materials processing. IEEE Transactions on Plasma Science, 2002, 30, 110-111.	1.3	10
59	The effective coefficient of secondary electron emission in plasma display panel. IEEE Transactions on Plasma Science, 2001, 29, 861-863.	1.3	20
60	Striation Mechanism and Triggered Striation in Dielectric Microdischarge Plasma. Japanese Journal of Applied Physics, 2001, 40, L528-L531.	1.5	12
61	New chaotic patterns in pulsed discharges. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 276, 286-290.	2.1	1
62	Non-axisymmetric simulation of the vertical displacement event in tokamaks. Plasma Physics and Controlled Fusion, 1999, 41, 551-565.	2.1	2
63	Ion-beam-driven instabilities in bounded dusty plasmas. IEEE Transactions on Plasma Science, 1999, 27, 1449-1453.	1.3	6
64	Effects of particle trapping and velocity slippage on beam-plasma interactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 247, 313-318.	2.1	1
65	A universal characterization of nonlinear self-oscillation and chaos in various particle-wave-wall interactions. Applied Physics Letters, 1998, 72, 1445-1447.	3.3	15
66	Parametrization of nonlinear and chaotic oscillations in driven beam-plasma diodes. Physical Review E, 1998, 58, 936-941.	2.1	13