
Martin Martschini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5583489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	⁶⁰ Fe and ²⁴⁴ Pu deposited on Earth constrain the r-process yields of recent nearby supernovae. Science, 2021, 372, 742-745.	12.6	60
2	Ultra-trace analysis of 36Cl by accelerator mass spectrometry: an interlaboratory study. Analytical and Bioanalytical Chemistry, 2011, 400, 3125-3132.	3.7	56
3	Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides. Tectonics, 2013, 32, 1107-1120.	2.8	30
4	⁶⁰ Fe deposition during the late Pleistocene and the Holocene echoes past supernova activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21873-21879.	7.1	25
5	Quality assurance in accelerator mass spectrometry: Results from an international round-robin exercise for 10Be. Nuclear Instruments & Methods in Physics Research B, 2012, 289, 68-73.	1.4	21
6	Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry. Nuclear Instruments & Methods in Physics Research B, 2014, 329, 22-29.	1.4	21
7	The ILIAMS project – An RFQ ion beam cooler for selective laser photodetachment at VERA. Nuclear Instruments & Methods in Physics Research B, 2019, 456, 213-217.	1.4	19
8	AMS of 36Cl with the VERA 3MV tandem accelerator. Nuclear Instruments & Methods in Physics Research B, 2013, 294, 115-120.	1.4	17
9	Comparison of methods for the detection of 10Be with AMS and a new approach based on a silicon nitride foil stack. International Journal of Mass Spectrometry, 2019, 444, 116175.	1.5	16
10	Selective laser photodetachment of intense atomic and molecular negative ion beams with the ILIAS RFQ ion beam cooler. International Journal of Mass Spectrometry, 2017, 415, 9-17.	1.5	15
11	Reassessment of 182Hf AMS measurements at VERA. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 3180-3182.	1.4	14
12	The ILIAS project for selective isobar suppression by laser photodetachment. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 217-221.	1.4	14
13	New and upgraded ionization chambers for AMS at the Australian National University. Nuclear Instruments & Methods in Physics Research B, 2019, 438, 141-147.	1.4	14
14	Highly sensitive 26Al measurements by Ion-Laser-InterAction Mass Spectrometry. International Journal of Mass Spectrometry, 2021, 465, 116576.	1.5	14
15	Developments towards detection of 135Cs at VERA. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 440-444.	1.4	13
16	36Cl exposure dating with a 3-MV tandem. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 744-747.	1.4	12
17	36Cl in a new light: AMS measurements assisted by ion-laser interaction. Nuclear Instruments & Methods in Physics Research B, 2019, 456, 163-168.	1.4	12
18	Recent advances in AMS of 36Cl with a 3-MV-tandem. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 3188-3191	1.4	11

MARTIN MARTSCHINI

#	Article	IF	CITATIONS
19	Isobar separation of 93Zr and 93Nb at 24 MeV with a new multi-anode ionization chamber. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 201-206.	1.4	10
20	Accelerator mass spectrometry measurement of the reaction Cl35(n,γ)Cl36 at keV energies. Physical Review C, 2019, 99, .	2.9	10
21	93Zr developments at the Heavy Ion Accelerator Facility at ANU. Nuclear Instruments & Methods in Physics Research B, 2019, 438, 77-83.	1.4	9
22	The quest for AMS of ¹⁸² Hf – why poor gas gives pure beams. EPJ Web of Conferences, 2020, 232, 02003.	0.3	9
23	5 YEARS OF ION-LASER INTERACTION MASS SPECTROMETRY—STATUS AND PROSPECTS OF ISOBAR SUPPRESSION IN AMS BY LASERS. Radiocarbon, 2022, 64, 555-568.	1.8	9
24	Developing Accelerator Mass Spectrometry Capabilities for Anthropogenic Radionuclide Analysis to Extend the Set of Oceanographic Tracers. Frontiers in Marine Science, 2022, 9, .	2.5	9
25	Zr/Nb isobar separation experiment for future 93Zr AMS measurement. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 491-495.	1.4	7
26	Stellar and thermal neutron capture cross section of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Be</mml:mi><mml:mpresc /><mml:none></mml:none><mml:mn>9</mml:mn></mml:mpresc </mml:mmultiscripts>. Physical Review C, 2019, 99, .</mml:math 	ripts	7
27	Spectroscopic analysis of the blue light emitted from Middleton type cesium sputter negative ion sources. Nuclear Instruments & Methods in Physics Research B, 2013, 295, 55-60.	1.4	6
28	Comparison of detector systems for the separation of 36Cl and 36S with a 3-MV tandem. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 847-850.	1.4	5
29	Light induced suppression of sulfur in a cesium sputter ion source. International Journal of Mass Spectrometry, 2012, 315, 55-59.	1.5	5
30	Novel ⁹⁰ Sr analysis of environmental samples by Ion-Laser InterAction Mass Spectrometry. Analytical Methods, 2022, 14, 2732-2738.	2.7	3
31	Using the nuclear activation AMS method for determining chlorine in solids at ppb-levels and below. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 649-653.	1.4	1