Andreas Schulze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5583268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections*. Astrophysical Journal, 2021, 923, 217.	4.5	55
2	Star formation in luminous LoBAL quasars at 2.0 < <i>z</i> < 2.5. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1469-1479.	4.4	4
3	C iv Emission-line Properties and Uncertainties in Black Hole Mass Estimates of zÂâ^1⁄4Â3.5 Quasars. Astrophysical Journal, 2020, 896, 40.	4.5	10
4	The Mass Relations between Supermassive Black Holes and Their Host Galaxies at 1Â<Âz < 2 with HST-WFC3. Astrophysical Journal, 2020, 888, 37.	4.5	87
5	A Significant Excess in Major Merger Rate for AGNs with the Highest Eddington Ratios at z < 0.2. Astrophysical Journal, 2020, 904, 79.	4.5	23
6	Circumnuclear Molecular Gas in Low-redshift Quasars and Matched Star-forming Galaxies. Astrophysical Journal, 2020, 898, 61.	4.5	4
7	Jet-driven Galaxy-scale Gas Outflows in the Hyperluminous Quasar 3C 273. Astrophysical Journal, 2019, 879, 75.	4.5	30
8	No signs of star formation being regulated in the most luminous quasars at z â^¼ 2 with ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1180-1198.	4.4	37
9	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 â‰ÂzÂâ‰Â7.0. Astrophysical Journal, 2019, 883, 183.	4.5	74
10	A Catastrophic Failure to Build a Massive Galaxy around a Supermassive Black Hole at zÂ=Â3.84. Astrophysical Journal, 2019, 881, 145.	4.5	4
11	Major Mergers Are Not the Dominant Trigger for High-accretion AGNs at <i>z</i> â ¹ /4 2. Astrophysical Journal, 2019, 882, 141.	4.5	45
12	Multi-wavelength Properties of Type 1 and Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey. Astrophysical Journal, 2019, 872, 168.	4.5	44
13	Discovery of the First Low-luminosity Quasar at zÂ>Â7. Astrophysical Journal Letters, 2019, 872, L2.	8.3	114
14	Where Do Quasar Hosts Lie with Respect to the Size–Mass Relation of Galaxies?. Astrophysical Journal Letters, 2019, 887, L5.	8.3	20
15	The role of LoBALs in quasar evolution. Proceedings of the International Astronomical Union, 2019, 15, 285-289.	0.0	0
16	No evidence for quenching in quasars. Proceedings of the International Astronomical Union, 2019, 15, 82-88.	0.0	0
17	Discovery of Strong Balmer Line Absorption in Two Luminous LoBAL Quasars at z â^¼ 1.5. Astrophysical Journal, 2018, 853, 167.	4.5	6
18	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at $z\hat{A}=\hat{A}\hat{A}$. Astrophysical Journal, 2018, 869, 150	4.5	153

ANDREAS SCHULZE

#	ARTICLE	IF	CITATIONS
19	An FMOS Survey of Moderate-luminosity, Broad-line AGNs in COSMOS, SXDS, and E-CDF-S. Astrophysical Journal, Supplement Series, 2018, 239, 22.	7.7	15
20	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at <i>z</i> Â≳ 6 studied with ALMA. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	42
21	The quasar luminosity function at redshift 4 with the Hyper Suprime-Cam Wide Survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	74
22	Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). IV. Discovery of 41 Quasars and Luminous Galaxies at 5.7Ââ‰ÂzÂâ‰Â6.9. Astrophysical Journal, Supplement Series, 2018, 237, 5.	7.7	81
23	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). II. Discovery of 32 quasars and luminous galaxies at 5.7Â<Â <i>z</i> ≤6.8. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	95
24	Evidence for Higher Black Hole Spin in Radio-loud Quasars. Astrophysical Journal, 2017, 849, 4.	4.5	16
25	Near-IR Spectroscopy of Luminous LoBAL Quasars at 1Â<ÂzÂ<Â2.5. Astrophysical Journal, 2017, 848, 104.	4.5	18
26	Accounting for selection effects in the BH–bulge relations: no evidence for cosmological evolution. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3422-3433.	4.4	69
27	DO QUIESCENT AND ACTIVE GALAXIES HAVE DIFFERENT <i>M</i> _{BH} -Ïf _* RELATIONS?. Astrophysical Journal, 2013, 772, 49.	4.5	143
28	Is there evolution in the black hole - bulge relation?. Proceedings of the International Astronomical Union, 2012, 8, 186-186.	0.0	0
29	EFFECT OF A DARK MATTER HALO ON THE DETERMINATION OF BLACK HOLE MASSES. Astrophysical Journal, 2011, 729, 21.	4.5	74