
Daoping He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5582707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO ₂ reduction into formic acid under hydrothermal conditions: A mini review. Energy Science and Engineering, 2022, 10, 1601-1613.	4.0	17
2	Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein. Science of the Total Environment, 2022, 828, 154440.	8.0	35
3	Hydrothermal synthesis of long-chain hydrocarbons up to C ₂₄ with NaHCO ₃ -assisted stabilizing cobalt. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
4	A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental, 2020, 264, 118495.	20.2	26
5	Atomic-scale evidence for highly selective electrocatalytic Nâ^'N coupling on metallic MoS ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31631-31638.	7.1	18
6	Enzyme Mimetic Active Intermediates for Nitrate Reduction in Neutral Aqueous Media. Angewandte Chemie, 2020, 132, 9831-9837.	2.0	13
7	Enzyme Mimetic Active Intermediates for Nitrate Reduction in Neutral Aqueous Media. Angewandte Chemie - International Edition, 2020, 59, 9744-9750.	13.8	77
8	Phase-selective Hydrothermal Synthesis of Metallic MoS ₂ at High Temperature. Chemistry Letters, 2019, 48, 828-831.	1.3	2
9	Selective Electrocatalytic Reduction of Nitrite to Dinitrogen Based on Decoupled Proton–Electron Transfer. Journal of the American Chemical Society, 2018, 140, 2012-2015.	13.7	56
10	Recent Advances in Fixation and Hydrogenation of Carbon Dioxide. , 2018, , .		0
11	Assemblies of hybrid core–shell ZSM-5 zeolite materials. RSC Advances, 2015, 5, 5438-5441.	3.6	5
12	Dramatic influence of carbamate-linked double chain organosilane with different length on zeolite morphology control. Journal of Porous Materials, 2015, 22, 65-72.	2.6	7
13	Amphiphilic Organosilane-directed Synthesis of Mesoporous ZSM-5 Zeolite Crystals with a Chain-like Morphology. Chemistry Letters, 2014, 43, 1616-1618.	1.3	9
14	Synthesis and Characterization of Series of Soft-Template Agents for Mesoporous Materials. Tenside, Surfactants, Detergents, 2014, 51, 348-351.	1.2	2