
Seungwoo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5582681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Block copolymer gyroids for nanophotonics: significance of lattice transformations. Nanophotonics, 2022, 11, 2583-2615.	2.9	7
2	Nanoparticle-on-mirror cavity: a historical view across nanophotonics and nanochemistry. Journal of the Korean Physical Society, 2022, 81, 502-509.	0.3	6
3	Photoâ€Transformable Gratings for Augmented Reality. Advanced Functional Materials, 2021, 31, 2100839.	7.8	14
4	Optimizing protein V untranslated region sequence in M13 phage for increased production of single-stranded DNA for origami. Nucleic Acids Research, 2021, 49, 6596-6603.	6.5	7
5	Symmetry-breaking in double gyroid block copolymer films by non-affine distortion. Applied Materials Today, 2021, 23, 101006.	2.3	11
6	Holography, Fourier Optics, and Beyond Photonic Crystals: Holographic Fabrications for Weyl Points, Bound States in the Continuum, and Exceptional Points. Advanced Photonics Research, 2021, 2, 2100061.	1.7	10
7	A Field Guide to Azopolymeric Optical Fourier Surfaces and Augmented Reality. Advanced Functional Materials, 2021, 31, 2104105.	7.8	19
8	Optical Reflection from Unforbidden Diffraction of Block Copolymer Templated Gyroid Films. ACS Macro Letters, 2021, 10, 1609-1615.	2.3	6
9	Design of DNA Origami Diamond Photonic Crystals. ACS Applied Bio Materials, 2020, 3, 747-756.	2.3	11
10	Neutral-Colored Transparent Crystalline Silicon Photovoltaics. Joule, 2020, 4, 235-246.	11.7	55
11	Exploiting Colloidal Metamaterials for Achieving Unnatural Optical Refractions. Advanced Materials, 2020, 32, e2001806.	11.1	35
12	Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nature Communications, 2020, 11, 5768.	5.8	33
13	Balanced Interfacial Interactions for Fluoroacrylic Block Copolymer Films and Fast Electric Field Directed Assembly. Chemistry of Materials, 2020, 32, 9633-9641.	3.2	14
14	DNA Origami Guided Self-Assembly of Plasmonic Polymers with Robust Long-Range Plasmonic Resonance. Nano Letters, 2020, 20, 8926-8932.	4.5	47
15	Double Gyroids for Frequency-Isolated Weyl Points in the Visible Regime and Interference Lithographic Design. ACS Photonics, 2020, 7, 1577-1585.	3.2	16
16	Colloidal Photonic Assemblies for Colorful Radiative Cooling. Langmuir, 2020, 36, 6589-6596.	1.6	70
17	Soft Plasmonic Assemblies Exhibiting Unnaturally High Refractive Index. Nano Letters, 2020, 20, 4768-4774.	4.5	29
18	3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare Systems and Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 21424-21432.	4.0	68

#	Article	IF	CITATIONS
19	DNA Base Pair Stacking Crystallization of Gold Colloids. Langmuir, 2020, 36, 5118-5125.	1.6	10
20	Frank–Kasper Phases Identified in PDMSâ€∢i>bâ€₽TFEA Copolymers with High Conformational Asymmetry. Macromolecular Rapid Communications, 2019, 40, e1900259.	2.0	51
21	Detailed balance analysis of plasmonic metamaterial perovskite solar cells. Optics Express, 2019, 27, A1241.	1.7	31
22	Antifreezing Gold Colloids. Journal of the American Chemical Society, 2019, 141, 18682-18693.	6.6	38
23	Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials. Accounts of Chemical Research, 2019, 52, 2768-2783.	7.6	41
24	Magnetic Plasmon Networks Programmed by Molecular Selfâ€Assembly. Advanced Materials, 2019, 31, e1901364.	11.1	47
25	Dual-colour generation from layered colloidal photonic crystals harnessing "core hatching―in double emulsions. Journal of Materials Chemistry C, 2019, 7, 6924-6931.	2.7	14
26	Lightâ€Directed Soft Mass Migration for Micro/Nanophotonics. Advanced Optical Materials, 2019, 7, 1900074.	3.6	31
27	Orientation Approach to Directional Photodeformations in Glassy Side-Chain Azopolymers. Journal of Physical Chemistry B, 2019, 123, 3337-3347.	1.2	34
28	Scalable, Highly Uniform, and Robust Colloidal Mie Resonators for Allâ€Đielectric Soft Metaâ€Optics. Advanced Optical Materials, 2019, 7, 1801167.	3.6	19
29	Uniaxial alignment of ZnO nanowires via light-induced directional migration of azopolymeric microspheres. Polymer, 2018, 138, 180-187.	1.8	6
30	DNA Origamiâ€Guided Assembly of the Roundest 60–100 nm Gold Nanospheres into Plasmonic Metamolecules. Advanced Functional Materials, 2018, 28, 1707309.	7.8	53
31	Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Advanced Materials, 2018, 30, 1702669.	11.1	102
32	Comparative Study of Plasmonic Resonances between the Roundest and Randomly Faceted Au Nanoparticles-on-Mirror Cavities. ACS Photonics, 2018, 5, 413-421.	3.2	42
33	Cellular Networks: A Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870343.	11.1	1
34	Fundamental and Practical Limits of Achieving Artificial Magnetism and Effective Optical Medium by Using Self-Assembly of Metallic Colloidal Clusters. Macromolecular Research, 2018, 26, 1103-1107.	1.0	1
35	A Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials. Advanced Materials, 2018, 30, e1802997.	11.1	27
36	Scalable synthesis of carbon-embedded ordered macroporous titania spheres with structural colors. Korean Journal of Chemical Engineering, 2018, 35, 2138-2144.	1.2	5

#	Article	IF	CITATIONS
37	Gold nanoparticle-embedded DNA thin films for ultraviolet photodetectors. Sensors and Actuators B: Chemical, 2018, 275, 137-144.	4.0	16
38	Petal-Inspired Diffractive Grating on a Wavy Surface: Deterministic Fabrications and Applications to Colorizations and LED Devices. ACS Applied Materials & amp; Interfaces, 2017, 9, 9935-9944.	4.0	28
39	Light-transformable and -healable triboelectric nanogenerators. Nano Energy, 2017, 38, 412-418.	8.2	24
40	Photofluidic Near-Field Mapping of Electric-Field Resonance in Plasmonic Metasurface Assembled with Gold Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 3745-3751.	2.1	10
41	Nature-Inspired Construction of Two-Dimensionally Self-Assembled Peptide on Pristine Graphene. Journal of Physical Chemistry Letters, 2017, 8, 3734-3739.	2.1	21
42	Assembly of "3D―plasmonic clusters by "2D―AFM nanomanipulation of highly uniform and smooth gold nanospheres. Scientific Reports, 2017, 7, 6045.	1.6	23
43	Limitations and Opportunities for Optical Metafluids To Achieve an Unnatural Refractive Index. ACS Photonics, 2017, 4, 2298-2311.	3.2	39
44	Using highly uniform and smooth selenium colloids as low-loss magnetodielectric building blocks of optical metafluids. Optics Express, 2017, 25, 13822.	1.7	16
45	Twoâ€Terminal Graphene Oxide Devices for Electrical Modulation of Broadband Terahertz Waves. Advanced Optical Materials, 2016, 4, 548-554.	3.6	2
46	Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing. Scientific Reports, 2016, 6, 27621.	1.6	35
47	Black phosphorus nonvolatile transistor memory. Nanoscale, 2016, 8, 9107-9112.	2.8	39
48	Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. Journal of the American Chemical Society, 2016, 138, 7733-7740.	6.6	172
49	Multibit MoS ₂ Photoelectronic Memory with Ultrahigh Sensitivity. Advanced Materials, 2016, 28, 9196-9202.	11.1	145
50	Mechanically Robust Silver Nanowires Network for Triboelectric Nanogenerators. Advanced Functional Materials, 2016, 26, 7717-7724.	7.8	71
51	Microspheres: Microfluidic Generation of Monodisperse and Photoreconfigurable Microspheres for Floral Iridescence-Inspired Structural Colorization (Adv. Mater. 26/2016). Advanced Materials, 2016, 28, 5332-5332.	11.1	1
52	Microfluidic Generation of Monodisperse and Photoreconfigurable Microspheres for Floral Iridescence–Inspired Structural Colorization. Advanced Materials, 2016, 28, 5268-5275.	11.1	34
53	Wafer-Scale Microwire Transistor Array Fabricated via Evaporative Assembly. ACS Applied Materials & Interfaces, 2016, 8, 15543-15550.	4.0	7
54	Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets. Nanotechnology, 2016, 27, 315301.	1.3	12

#	Article	IF	CITATIONS
55	Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies. Optics Express, 2015, 23, 28170.	1.7	32
56	InGaAsP nanobeam light emitter integrated with Si waveguide via transfer printing. , 2015, , .		0
57	Heterogeneous three-dimensional assembly of metamaterials and metadevices by modular transfer printing. , 2015, , .		0
58	Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality. Langmuir, 2015, 31, 13773-13782.	1.6	29
59	A printed nanobeam laser on silicon. , 2015, , .		0
60	Experimental approach to the fundamental limit of the extinction coefficients of ultra-smooth and highly spherical gold nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 20786-20794.	1.3	29
61	On-Demand Doping of Graphene by Stamping with a Chemically Functionalized Rubber Lens. ACS Nano, 2015, 9, 4354-4361.	7.3	16
62	Directional Superficial Photofluidization for Deterministic Shaping of Complex 3D Architectures. ACS Applied Materials & amp; Interfaces, 2015, 7, 8209-8217.	4.0	63
63	Multifunctional Graphene Optoelectronic Devices Capable of Detecting and Storing Photonic Signals. Nano Letters, 2015, 15, 2542-2547.	4.5	110
64	Deterministic assembly of metamolecules by atomic force microscope-enabled manipulation of ultra-smooth, super-spherical gold nanoparticles. Optics Express, 2015, 23, 12766.	1.7	29
65	Design of optical metamaterial mirror with metallic nanoparticles for floating-gate graphene optoelectronic devices. Optics Express, 2015, 23, 21809.	1.7	11
66	Light-Induced Surface Patterning of Silica. ACS Nano, 2015, 9, 9837-9848.	7.3	17
67	Efficient confinement of ultraviolet light into a self-assembled, dielectric colloidal monolayer on a flat aluminum film. Applied Physics Express, 2014, 7, 112002.	1.1	4
68	A printed nanobeam laser on a SiO_2/Si substrate for low-threshold continuous-wave operation. Optics Express, 2014, 22, 12115.	1.7	15
69	Vertically Oriented, Threeâ€Dimensionally Tapered Deepâ€Subwavelength Metallic Nanohole Arrays Developed by Photofluidization Lithography. Advanced Materials, 2014, 26, 7521-7528.	11.1	27
70	Wearable Devices: Light-Powered Healing of a Wearable Electrical Conductor (Adv. Funct. Mater.) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
71	Lightâ€Powered Healing of a Wearable Electrical Conductor. Advanced Functional Materials, 2014, 24, 7273-7283.	7.8	71

Multiâ€Level Micro/Nanotexturing by Threeâ€Dimensionally Controlled Photofluidization and its Use in
Plasmonic Applications. Advanced Materials, 2013, 25, 5490-5497.

#	Article	IF	CITATIONS
73	Improved shelf-life stability of holographic photopolymer containing monomer stabilizer. Optical Materials, 2013, 35, 547-552.	1.7	6
74	Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing. Applied Physics Letters, 2012, 100, .	1.5	57
75	Gate-controlled active graphene metamaterials at terahertz frequencies. , 2012, , .		0
76	Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Materials, 2012, 11, 936-941.	13.3	777
77	Imbricate Scales as a Design Construct for Microsystem Technologies. Small, 2012, 8, 901-906.	5.2	24
78	Directional Photofluidization Lithography: Micro/Nanostructural Evolution by Photofluidic Motions of Azobenzene Materials. Advanced Materials, 2012, 24, 2069-2103.	11.1	252
79	Reversibly Stretchable and Tunable Terahertz Metamaterials with Wrinkled Layouts. Advanced Materials, 2012, 24, 3491-3497.	11.1	87
80	Photofluidization: Directional Photofluidization Lithography: Micro/Nanostructural Evolution by Photofluidic Motions of Azobenzene Materials (Adv. Mater. 16/2012). Advanced Materials, 2012, 24, 2062-2062.	11.1	2
81	Metamaterials: Reversibly Stretchable and Tunable Terahertz Metamaterials with Wrinkled Layouts (Adv. Mater. 26/2012). Advanced Materials, 2012, 24, 3438-3438.	11.1	2
82	Diverse nanotextured surface fabricated by directional photofluidization lithography and their application for wettability control. , 2011, , .		0
83	Hierarchically tunable phtonic bandgaps by directional photofluidization. , 2011, , .		Ο
84	Highâ€Resolution Patterning of Various Largeâ€Area, Highly Ordered Structural Motifs by Directional Photofluidization Lithography: Subâ€30â€nm Line, Ellipsoid, Rectangle, and Circle Arrays. Advanced Functional Materials, 2011, 21, 1770-1778.	7.8	58
85	Monolithic, Hierarchical Surface Reliefs by Holographic Photofluidization of Azopolymer Arrays: Direct Visualization of Polymeric Flows. Advanced Functional Materials, 2011, 21, 4412-4422.	7.8	58
86	Photofluidization of Azopolymer: Monolithic, Hierarchical Surface Reliefs by Holographic Photofluidization of Azopolymer Arrays: Direct Visualization of Polymeric Flows (Adv. Funct. Mater.) Tj ETQq0 0	0 r ଟ୍ଟB ଣ /୦៶	verl o ck 10 Tf 5
87	Deterministic Nanotexturing by Directional Photofluidization Lithography. Advanced Materials, 2011, 23, 3244-3250.	11.1	37
88	Photofluidic Nanotexturing: Deterministic Nanotexturing by Directional Photofluidization Lithography (Adv. Mater. 29/2011). Advanced Materials, 2011, 23, 3243-3243.	11.1	0
89	Poly(ε-caprolactone) diol functionalized with a cinnamoyl group and its UV-triggered in-plane alignment. Reactive and Functional Polymers, 2010, 70, 622-629.	2.0	8
90	Directional Photofluidization Lithography for Nanoarchitectures with Controlled Shapes and Sizes. Nano Letters, 2010, 10, 296-304.	4.5	72

#	Article	IF	CITATIONS
91	Fabrication of the Funnel-Shaped Three-Dimensional Plasmonic Tip Arrays by Directional Photofluidization Lithography. ACS Nano, 2010, 4, 7175-7184.	7.3	52
92	UV-driven in-plane rotation of a liquid crystal director in poly(vinyl cinnamate) films having microscale grooves. Optics Letters, 2010, 35, 3141.	1.7	2
93	Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror. Optics Express, 2010, 18, A522.	1.7	15
94	Golf ball-shaped PLGA microparticles with internal pores fabricated by simple O/W emulsion. Chemical Communications, 2010, 46, 7433.	2.2	49
95	Multifunctional photoreactive inorganic cages for three-dimensional holographic data storage. Optics Letters, 2009, 34, 3095.	1.7	18
96	Control of liquid crystal pretilt angles by using organic/inorganic hybrid interpenetrating networks. Optics Express, 2009, 17, 16603.	1.7	29
97	Generation of pretilt angles of liquid crystals on cinnamate-based photoalignment layer by a simple directional peel-off process. Optics Express, 2009, 17, 23565.	1.7	8
98	Holographic photopolymers of organic/inorganic hybrid interpenetrating networks for reduced volume shrinkage. Journal of Materials Chemistry, 2009, 19, 1105.	6.7	21
99	Unusual surface reliefs from photoinduced creeping and aggregation behavior of azopolymer. Applied Physics Letters, 2008, 93, .	1.5	29
100	Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers. Optics Express, 2007, 15, 1497.	1.7	41
101	Facile fabrication of close-packed microlens arrays using photoinduced surface relief structures as templates. Optics Express, 2007, 15, 14550.	1.7	40