Chengang Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5582504/publications.pdf

Version: 2024-02-01

361296 454834 1,323 31 20 30 citations h-index g-index papers 32 32 32 1691 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers. Advanced Optical Materials, 2017, 5, 1700368.	3.6	141
2	Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nature Communications, 2020, 11, 3367.	5.8	123
3	Compact Multilayer Film Structures for Ultrabroadband, Omnidirectional, and Efficient Absorption. ACS Photonics, 2016, 3, 590-596.	3.2	108
4	Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture. Advanced Materials, 2019, 31, e1903173.	11.1	105
5	Highâ€Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications. Advanced Materials, 2017, 29, 1605177.	11.1	90
6	Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11782-11791.	4.0	88
7	Wide-angle, polarization-independent ultrathin broadband visible absorbers. Applied Physics Letters, 2016, 108, .	1.5	68
8	Thinâ€Metalâ€Filmâ€Based Transparent Conductors: Material Preparation, Optical Design, and Device Applications. Advanced Optical Materials, 2021, 9, 2001298.	3.6	64
9	Angular- and polarization-independent structural colors based on 1D photonic crystals. Laser and Photonics Reviews, 2015, 9, 354-362.	4.4	51
10	Enhancing the Purity of Reflective Structural Colors with Ultrathin Bilayer Media as Effective Ideal Absorbers. Advanced Optical Materials, 2019, 7, 1900739.	3.6	49
11	High-Performance Large-Scale Flexible Optoelectronics Using Ultrathin Silver Films with Tunable Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27216-27225.	4.0	47
12	Angle Robust Reflection/Transmission Plasmonic Filters Using Ultrathin Metal Patch Array. Advanced Optical Materials, 2016, 4, 1981-1986.	3.6	44
13	Vivid-colored silicon solar panels with high efficiency and non-iridescent appearance. Nanoscale Horizons, 2019, 4, 874-880.	4.1	44
14	Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity. Advanced Science, 2019, 6, 1901320.	5.6	40
15	Angleâ€Insensitive and CMOSâ€Compatible Subwavelength Color Printing. Advanced Optical Materials, 2016, 4, 1696-1702.	3.6	38
16	Visualizing Mie Resonances in Low-Index Dielectric Nanoparticles. Physical Review Letters, 2018, 120, 253902.	2.9	28
17	Low-Temperature Oxide/Metal/Oxide Multilayer Films as Highly Transparent Conductive Electrodes for Optoelectronic Devices. ACS Applied Energy Materials, 2021, 4, 6553-6561.	2.5	26
18	Robust Extraction of Hyperbolic Metamaterial Permittivity Using Total Internal Reflection Ellipsometry. ACS Photonics, 2018, 5, 2234-2242.	3.2	25

#	Article	IF	Citations
19	Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals. Nano Research, 2019, 12, 543-548.	5.8	25
20	High-color-purity, angle-invariant, and bidirectional structural colors based on higher-order resonances. Optics Letters, 2019, 44, 86.	1.7	21
21	Electrodeposition of Large Area, Angle-Insensitive Multilayered Structural Colors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29065-29071.	4.0	19
22	Highâ€Purity Hybrid Structural Colors by Enhancing Optical Absorption of Organic Dyes in Resonant Cavity. Advanced Optical Materials, 2020, 8, 2000317.	3.6	18
23	Optical cloaking and invisibility: From fiction toward a technological reality. Journal of Applied Physics, 2021, 129, .	1.1	16
24	Optical Device Based on a Nanopillar Array by the Pattern Transfer of an Anodic Aluminum Oxide Membrane. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36817-36823.	4.0	10
25	Broad-Spectrum Ultrathin-Metal-Based Oxide/Metal/Oxide Transparent Conductive Films for Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 58539-58551.	4.0	8
26	Invisibility cloak with image projection capability. Scientific Reports, 2016, 6, 38965.	1.6	7
27	Highâ€Performance Transparent Broadband Microwave Absorbers. Advanced Materials Interfaces, 2022, 9, .	1.9	7
28	Lenticularâ€Lensâ€Based Colored Antiglare Dashboard Surfaces. Advanced Materials Technologies, 2017, 2, 1600177.	3.0	4
29	Transparent Ultrathin Doped Silver Film for Broadband Electromagnetic Interference Shielding. , 2018,		3
30	High Efficiency Semi-Transparent Organic Photovoltaics., 2019,,.		3
31	Nanoimprint Lithography: Angle-Insensitive and CMOS-Compatible Subwavelength Color Printing (Advanced Optical Materials 11/2016). Advanced Optical Materials, 2016, 4, 1695-1695.	3.6	1