## Eitan Fibach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5582312/publications.pdf Version: 2024-02-01



FITAN FIRACH

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The Role of Oxidative Stress in Hemolytic Anemia. Current Molecular Medicine, 2008, 8, 609-619.                                                                                                                                         | 1.3 | 228       |
| 2  | N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects<br>human red blood cells from oxidative stress. Free Radical Biology and Medicine, 2005, 38, 136-145.                                 | 2.9 | 189       |
| 3  | Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease<br>exhibit oxidative stress that can be ameliorated by antioxidants. British Journal of Haematology, 2006,<br>132, 108-113.           | 2.5 | 177       |
| 4  | Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrowÂhoming and engraftment. Experimental Hematology, 2012, 40, 342-355.e1.                  | 0.4 | 168       |
| 5  | Induction of $\hat{1}^3$ -Globin by Histone Deacetylase Inhibitors. Blood, 1997, 90, 2075-2083.                                                                                                                                         | 1.4 | 132       |
| 6  | Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. European Journal of Haematology, 2003, 70, 84-90.                                                                         | 2.2 | 128       |
| 7  | Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34 + cells and increases their engraftment potential in NOD/SCID mice. Experimental Hematology, 2004, 32, 547-555. | 0.4 | 117       |
| 8  | Macrophages function as a ferritin iron source for cultured human erythroid precursors. Journal of<br>Cellular Biochemistry, 2008, 103, 1211-1218.                                                                                      | 2.6 | 113       |
| 9  | Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry Part A:<br>the Journal of the International Society for Analytical Cytology, 2008, 73A, 22-27.                                               | 1.5 | 108       |
| 10 | Medicinal Chemistry of Fetal Hemoglobin Inducers for Treatment of β-Thalassemia. Current<br>Medicinal Chemistry, 2007, 14, 199-212.                                                                                                     | 2.4 | 103       |
| 11 | Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. European Journal of Haematology, 2007, 79, 463-467.                                                        | 2.2 | 98        |
| 12 | Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells.<br>Cytometry, 2004, 60A, 73-80.                                                                                                             | 1.8 | 93        |
| 13 | Evidence for tissue iron overload in longâ€ŧerm hemodialysis patients and the impact of withdrawing parenteral iron. European Journal of Haematology, 2012, 89, 87-93.                                                                  | 2.2 | 91        |
| 14 | Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro.<br>Haematologica, 2012, 97, 994-1002.                                                                                                        | 3.5 | 90        |
| 15 | Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. British Journal of Haematology, 2002, 116, 655-661.                                                                   | 2.5 | 82        |
| 16 | Therapeutic Hemoglobin Levels after Gene Transfer in β-Thalassemia Mice and in Hematopoietic Cells of<br>β-Thalassemia and Sickle Cells Disease Patients. PLoS ONE, 2012, 7, e32345.                                                    | 2.5 | 78        |
| 17 | Changes in parameters of oxidative stress and free iron biomarkers during treatment with deferasirox in iron-overloaded patients with myelodysplastic syndromes. Haematologica, 2010, 95, 1433-1434.                                    | 3.5 | 74        |
| 18 | Utilization of Intracellular Ferritin Iron for Hemoglobin Synthesis in Developing Human Erythroid<br>Precursors. Blood, 1997, 90, 831-838.                                                                                              | 1.4 | 73        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Hypoxia alters progression of the erythroid program. Experimental Hematology, 2008, 36, 17-27.                                                                                                                                                  | 0.4 | 73        |
| 20 | Oxidative status of platelets in normal and thalassemic blood. Thrombosis and Haemostasis, 2004, 92, 1052-1059.                                                                                                                                 | 3.4 | 69        |
| 21 | N-acetylcysteine amide (AD4) attenuates oxidative stress in beta-thalassemia blood cells. Biochimica Et<br>Biophysica Acta - General Subjects, 2008, 1780, 249-255.                                                                             | 2.4 | 69        |
| 22 | The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia.<br>Annals of the New York Academy of Sciences, 2010, 1202, 10-16.                                                                              | 3.8 | 65        |
| 23 | Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. British Journal of Haematology, 2005, 129, 435-441.                                                                             | 2.5 | 61        |
| 24 | Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through<br>maintaining hemoglobin stability. Biochemical and Biophysical Research Communications, 2012, 426,<br>427-432.                                    | 2.1 | 58        |
| 25 | Pathophysiology and treatment of patients with beta-thalassemia – an update. F1000Research, 2017, 6, 2156.                                                                                                                                      | 1.6 | 54        |
| 26 | Iron overload in hematological disorders. Presse Medicale, 2017, 46, e296-e305.                                                                                                                                                                 | 1.9 | 50        |
| 27 | Self-renewal and commitment to differentiation of human leukemic promyelocytic cells (HL-60).<br>Journal of Cellular Physiology, 1982, 113, 152-158.                                                                                            | 4.1 | 46        |
| 28 | Oxidative stress causes membrane phospholipid rearrangement and shedding from RBC membranes—An<br>NMR study. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2388-2394.                                                               | 2.6 | 46        |
| 29 | The labile iron pool in human erythroid cells. British Journal of Haematology, 2008, 142, 301-307.                                                                                                                                              | 2.5 | 45        |
| 30 | Fermented papaya preparation as redox regulator in blood cells of <i>β</i> â€ŧhalassemic mice and patients. Phytotherapy Research, 2008, 22, 820-828.                                                                                           | 5.8 | 43        |
| 31 | Quantitative flow cytometric analysis of ABO red cell antigens. Cytometry, 1991, 12, 545-549.                                                                                                                                                   | 1.8 | 42        |
| 32 | Oxidative status of red blood cells, neutrophils, and platelets in paroxysmal nocturnal hemoglobinuria. Experimental Hematology, 2008, 36, 369-377.                                                                                             | 0.4 | 42        |
| 33 | Resveratrol: Antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and β-thalassemia patients. International Journal of Molecular Medicine, 2012, 29, 974-82.                                            | 4.0 | 39        |
| 34 | Oxidative Stress in $\hat{I}^2$ -Thalassemia. Molecular Diagnosis and Therapy, 2019, 23, 245-261.                                                                                                                                               | 3.8 | 37        |
| 35 | Transferrin-iron routing to the cytosol and mitochondria as studied by live and real-time fluorescence. Biochemical Journal, 2010, 429, 185-193.                                                                                                | 3.7 | 34        |
| 36 | Amelioration of oxidative stress in red blood cells from patients with βâ€ŧhalassemia major and<br>intermedia and Eâ€Î²â€ŧhalassemia following administration of a fermented papaya preparation.<br>Phytotherapy Research, 2010, 24, 1334-1338. | 5.8 | 33        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of Iron Chelators on Labile Iron and Oxidative Status of Thalassaemic Erythroid Cells. Acta<br>Haematologica, 2010, 123, 14-20.                                                                           | 1.4 | 33        |
| 38 | Oxidative Stress-Induced Membrane Shedding from RBCs is Ca Flux-Mediated and Affects Membrane<br>Lipid Composition. Journal of Membrane Biology, 2011, 240, 73-82.                                               | 2.1 | 33        |
| 39 | Uptake of Non-Transferrin Iron by Erythroid Cells. Anemia, 2011, 2011, 1-8.                                                                                                                                      | 1.7 | 33        |
| 40 | Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell<br>transplantation for hematologic malignancies. Critical Reviews in Oncology/Hematology, 2017, 113,<br>156-170. | 4.4 | 33        |
| 41 | Increased serum hepcidin levels during treatment with deferasirox in ironâ€overloaded patients with myelodysplastic syndrome. British Journal of Haematology, 2011, 153, 118-120.                                | 2.5 | 32        |
| 42 | Erythropoietin activity in the serum of beta thalassemic patients. Scandinavian Journal of<br>Haematology, 1986, 37, 221-228.                                                                                    | 0.0 | 30        |
| 43 | The oxidative status of blood cells in a murine model of graft-versus-host disease. Annals of Hematology, 2007, 86, 753-758.                                                                                     | 1.8 | 29        |
| 44 | The Antioxidant Effect of Erythropoietin on Thalassemic Blood Cells. Anemia, 2010, 2010, 1-11.                                                                                                                   | 1.7 | 24        |
| 45 | Distribution and shedding of the membrane phosphatidylserine during maturation and aging of erythroid cells. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2773-2780.                                | 2.6 | 23        |
| 46 | Vasculoâ€ŧoxic and proâ€inflammatory action of unbound haemoglobin, haem and iron in<br>transfusionâ€dependent patients with haemolytic anaemias. British Journal of Haematology, 2021, 193,<br>637-658.         | 2.5 | 22        |
| 47 | The Effect of the Copper Chelator Tetraethylenepentamine on Reactive Oxygen Species Generation by<br>Human Hematopoietic Progenitor Cells. Stem Cells and Development, 2007, 16, 1053-1056.                      | 2.1 | 21        |
| 48 | A preclinical approach for gene therapy of βâ€ŧhalassemia. Annals of the New York Academy of Sciences,<br>2010, 1202, 134-140.                                                                                   | 3.8 | 21        |
| 49 | Oxidative stress contributes to hemolysis in patients with hereditary spherocytosis and can be ameliorated by fermented papaya preparation. Annals of Hematology, 2011, 90, 509-513.                             | 1.8 | 21        |
| 50 | Cell culture and animal models to screen for promising fetal hemoglobin-stimulating compounds.<br>Seminars in Hematology, 2001, 38, 374-381.                                                                     | 3.4 | 20        |
| 51 | Reducing erythropoietin in cultures of human erythroid precursors elevates the proportion of fetal<br>haemoglobin. British Journal of Haematology, 1994, 88, 39-45.                                              | 2.5 | 19        |
| 52 | Are postnatal hemangioblasts generated by dedifferentiation from committed hematopoietic stem cells?. Experimental Hematology, 2007, 35, 691-701.                                                                | 0.4 | 19        |
| 53 | Retinoic Acid Induction of CD38 Antigen Expression on Normal and Leukemic Human Myeloid Cells:<br>Relationship with Cell Differentiation. Leukemia and Lymphoma, 2003, 44, 691-698.                              | 1.3 | 18        |
| 54 | A flow cytometry approach for quantitative analysis of cellular phosphatidylserine distribution and shedding. Analytical Biochemistry, 2009, 393, 111-116.                                                       | 2.4 | 18        |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Decreased hemolysis following administration of antioxidant—fermented papaya preparation (FPP) to<br>a patient with PNH. Annals of Hematology, 2010, 89, 429-430.                                                 | 1.8 | 16        |
| 56 | Transcriptional upregulation of $\hat{I}^3$ -globin by phenylbutyrate and analogous aromatic fatty acids. Biochemical Pharmacology, 1996, 52, 1227-1233.                                                          | 4.4 | 15        |
| 57 | Monoclonal antibodyâ€based methods for quantitation of hemoglobins: application to evaluating<br>patients with sickle cell anemia treated with hydroxyurea. European Journal of Haematology, 1996, 57,<br>17-24.  | 2.2 | 15        |
| 58 | Oxidative stress in paroxysmal nocturnal hemoglobinuria and other conditions of complement-mediated hemolysis. Free Radical Biology and Medicine, 2015, 88, 63-69.                                                | 2.9 | 15        |
| 59 | Flow Cytometric Analysis of Hydroxyurea Effects on Fetal Hemoglobin Production in Cultures of<br>βâ€Thalassemia Erythroid Precursors. Hemoglobin, 2003, 27, 77-87.                                                | 0.8 | 14        |
| 60 | Improvement of Oxidative Stress Parameters in MDS Patients with Iron Overload Treated with Deferasirox. Blood, 2008, 112, 2675-2675.                                                                              | 1.4 | 14        |
| 61 | Proliferation and differentiation of erythroid progenitors in liquid culture: Analysis of progenitors<br>derived from patients with polycythemia vera. American Journal of Hematology, 1990, 35, 151-156.         | 4.1 | 13        |
| 62 | Angiomodulators in cancer therapy: New perspectives. Biomedicine and Pharmacotherapy, 2017, 89, 578-590.                                                                                                          | 5.6 | 13        |
| 63 | Acquired sideroblastic anaemia following progesterone therapy. British Journal of Haematology, 1994,<br>87, 859-862.                                                                                              | 2.5 | 12        |
| 64 | Oxidative status of valinomycin-resistant normal, β-thalassemia and sickle red blood cells. Biochimica<br>Et Biophysica Acta - General Subjects, 2006, 1760, 793-799.                                             | 2.4 | 12        |
| 65 | Heterogeneity of F cells in βâ€ŧhalassemia. Transfusion, 2013, 53, 499-504.                                                                                                                                       | 1.6 | 12        |
| 66 | Iron–chelator complexes as iron sources for early developing human erythroid precursors.<br>Translational Research, 2008, 151, 88-96.                                                                             | 5.0 | 11        |
| 67 | Improved method for diagnosis of polycythemia vera based on flow cytometric analysis of autonomous growth of erythroid precursors in liquid culture. , 1997, 54, 47-52.                                           |     | 10        |
| 68 | Hemoglobin Switch in the Newborn: A Flow Cytometry Analysis. Neonatology, 2007, 91, 61-68.                                                                                                                        | 2.0 | 10        |
| 69 | Does Erythropoietin Have a Role in the Treatment of β-Hemoglobinopathies?. Hematology/Oncology<br>Clinics of North America, 2014, 28, 249-263.                                                                    | 2.2 | 10        |
| 70 | A mouse model to study thrombotic complications of thalassemia. Thrombosis Research, 2015, 135, 521-525.                                                                                                          | 1.7 | 10        |
| 71 | The Effect of Tetraethylenepentamine, a Synthetic Copper Chelating Polyamine, on Expression of CD34<br>and CD38 Antigens on Normal and Leukemic Hematopoietic Cells. Leukemia and Lymphoma, 2004, 45,<br>583-589. | 1.3 | 9         |
| 72 | Apheresis Induces Oxidative Stress in Blood Cells. Therapeutic Apheresis and Dialysis, 2010, 14, 166-171.                                                                                                         | 0.9 | 9         |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hydroxyurea and Hemin Affect Both the Transcriptional and Post-Transcriptional Mechanisms of Some<br>Globin Genes in Human Adult Erythroid Cellsa. Annals of the New York Academy of Sciences, 1998, 850,<br>449-451.                   | 3.8 | 8         |
| 74 | Erythropoiesis In Vitro—A Research and Therapeutic Tool in Thalassemia. Journal of Clinical Medicine,<br>2019, 8, 2124.                                                                                                                 | 2.4 | 8         |
| 75 | The Redox Balance and Membrane Shedding in RBC Production, Maturation, and Senescence. Frontiers in Physiology, 2021, 12, 604738.                                                                                                       | 2.8 | 8         |
| 76 | Retinoic Acid Receptor Antagonist Inhibits CD38 Antigen Expression on Human Hematopoietic CellsIn<br>Vitro. Leukemia and Lymphoma, 2004, 45, 1025-1035.                                                                                 | 1.3 | 7         |
| 77 | Involvement of Phosphatases in Proliferation, Maturation, and Hemoglobinization of Developing<br>Erythroid Cells. Journal of Signal Transduction, 2011, 2011, 1-7.                                                                      | 2.0 | 7         |
| 78 | Shedding of Phosphatidylserine from Developing Erythroid Cells Involves Microtubule<br>Depolymerization and Affects Membrane Lipid Composition. Journal of Membrane Biology, 2012, 245,<br>779-787.                                     | 2.1 | 7         |
| 79 | The Effect of Fermented Papaya Preparation on Radioactive Exposure. Radiation Research, 2015, 184, 304-313.                                                                                                                             | 1.5 | 7         |
| 80 | Nicotinamide Modulates Ex-Vivo Expansion of Cord Blood Derived CD34+ Cells Cultured with Cytokines and Promotes Their Homing and Engraftment in SCID Mice Blood, 2006, 108, 725-725.                                                    | 1.4 | 7         |
| 81 | Erythroid differentiation ability of butyric acid analogues: Identification of basal chemical<br>structures of new inducers of foetal haemoglobin. European Journal of Pharmacology, 2015, 752,<br>84-91.                               | 3.5 | 6         |
| 82 | The Human Ankyrin Insulator Supports Production of Therapeutic Levels of Adult Hemoglobin<br>Following β-Globin Gene Transfer in Hematopoietic Cells Derived From Thalassemic and Sickle Cell<br>Patients. Blood, 2011, 118, 2055-2055. | 1.4 | 6         |
| 83 | New Insights on β-Thalassemia in the Palestinian Population of Gaza: High Frequency and Milder<br>Phenotype Among Homozygous IVS-I-1 ( <i>HBB</i> : c.92+1G>A) Patients with High Levels of Hb F.<br>Hemoglobin, 2017, 41, 144-146.     | 0.8 | 5         |
| 84 | Elevated systemic heme and iron levels as risk factor for vascular dysfunction and atherosclerosis:<br>Evidence from a beta-thalassemia cohort study. Atherosclerosis, 2017, 263, e107-e108.                                            | 0.8 | 3         |
| 85 | Fetal Hemoglobin in the Maternal Circulation – Contribution of Fetal Red Blood Cells. Hemoglobin, 2018, 42, 138-140.                                                                                                                    | 0.8 | 3         |
| 86 | Thalassemic DNA-Containing Red Blood Cells Are under Oxidative Stress. Anemia, 2012, 2012, 1-5.                                                                                                                                         | 1.7 | 2         |
| 87 | The JAK2V617F mutation in normal individuals takes place in differentiating cells. Blood Cells,<br>Molecules, and Diseases, 2017, 63, 45-51.                                                                                            | 1.4 | 2         |
| 88 | Detection of Fetomaternal Hemorrhage and ABO incompatibility. Cytometry Part B - Clinical<br>Cytometry, 2018, 94, 564-564.                                                                                                              | 1.5 | 2         |
| 89 | Red Blood Cells as Redox Modulators in Hemolytic Anemia. , 2019, , .                                                                                                                                                                    |     | 2         |
| 90 | Involvement of Oxidative Stress in Hemolytic Anemia. , 2014, , 2499-2516.                                                                                                                                                               |     | 2         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Vanadate elevates fetal hemoglobin in human erythroid precursors by inhibiting cell maturation.<br>Experimental Biology and Medicine, 2007, 232, 654-61.                                                             | 2.4 | 2         |
| 92 | Detection of significant fetomaternal hemorrhage by flow cytometry. American Journal of Obstetrics and Gynecology, 2004, 191, S145.                                                                                  | 1.3 | 1         |
| 93 | Hemin Augments Growth and Hemoglobinization of Erythroid Precursors from Patients with<br>Diamond-Blackfan Anemia. Anemia, 2012, 2012, 1-4.                                                                          | 1.7 | 1         |
| 94 | Antagonists to Retinoid Receptors Down-Regulate CD38 Expression and Inhibit In Vitro Differentiation of Cord Blood Derived CD34+ Cells Blood, 2006, 108, 3652-3652.                                                  | 1.4 | 1         |
| 95 | Splicing Factor 3b Subunit 1 (SF3B1) mediates Mitochondrial Iron Overload In Myelodysplastic<br>Syndromes With Ring Sideroblasts By Alternative Splicing Of Mitoferrin-1 (SLC25A37). Blood, 2013, 122,<br>1555-1555. | 1.4 | 1         |
| 96 | Editorial: Membrane Processes in Erythroid Development and Red Cell Life Time. Frontiers in Physiology, 2021, 12, 655117.                                                                                            | 2.8 | 0         |
| 97 | Anemia and Iron Deficiency in Strenuously Trained Adolescents Blood, 2007, 110, 961-961.                                                                                                                             | 1.4 | 0         |
| 98 | Role of Oxidative Stress inThalassemia and the Antioxidative Effect of Fermented Papaya<br>Preparation. Oxidative Stress and Disease, 2008, , .                                                                      | 0.3 | 0         |
| 99 | The JAK2V617F Mutation in Non-MPD Hematopoiesis Occurs at a Low Frequency and in Differentiating Erythroid Cells Blood, 2008, 112, 1344-1344.                                                                        | 1.4 | 0         |