Argyris Politis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5582162/publications.pdf

Version: 2024-02-01

42 2,043 22 41 papers citations h-index g-index

52 52 52 2157
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mass Spectrometry of Intact V-Type ATPases Reveals Bound Lipids and the Effects of Nucleotide Binding. Science, 2011, 334, 380-385.	12.6	251
2	Charge-State Dependent Compaction and Dissociation of Protein Complexes: Insights from Ion Mobility and Molecular Dynamics. Journal of the American Chemical Society, 2012, 134, 3429-3438.	13.7	223
3	A mass spectrometry–based hybrid method for structural modeling of protein complexes. Nature Methods, 2014, 11, 403-406.	19.0	149
4	Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation. Nature Communications, 2013, 4, 1985.	12.8	122
5	Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes. PLoS ONE, 2010, 5, e12080.	2.5	119
6	Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nature Communications, 2018, 9, 4151.	12.8	112
7	Structural Modeling of Heteromeric Protein Complexes from Disassembly Pathways and Ion Mobility-Mass Spectrometry. Structure, 2012, 20, 1596-1609.	3 . 3	110
8	Ion mobility–mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nature Chemistry, 2014, 6, 208-215.	13.6	85
9	Interrogating Membrane Protein Conformational Dynamics within Native Lipid Compositions. Angewandte Chemie - International Edition, 2017, 56, 15654-15657.	13.8	82
10	Specific cardiolipin–SecY interactions are required for proton-motive force stimulation of protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7967-7972.	7.1	65
11	Structural Lipids Enable the Formation of Functional Oligomers of the Eukaryotic Purine Symporter UapA. Cell Chemical Biology, 2018, 25, 840-848.e4.	5.2	64
12	Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics, 2019, 35, 3171-3173.	4.1	60
13	Surface Accessibility and Dynamics of Macromolecular Assemblies Probed by Covalent Labeling Mass Spectrometry and Integrative Modeling. Analytical Chemistry, 2017, 89, 1459-1468.	6.5	46
14	Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chemical Communications, 2018, 54, 13702-13705.	4.1	44
15	Structural basis of Cullin 2 RING E3 ligase regulation by the COP9 signalosome. Nature Communications, 2019, 10, 3814.	12.8	40
16	A Massâ€Spectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie - International Edition, 2018, 57, 17194-17199.	13.8	39
17	Integrating hydrogen–deuterium exchange mass spectrometry with molecular dynamics simulations to probe lipid-modulated conformational changes in membrane proteins. Nature Protocols, 2019, 14, 3183-3204.	12.0	39
18	Topological Models of Heteromeric Protein Assemblies from Mass Spectrometry: Application to the Yeast eIF3:eIF5 Complex. Chemistry and Biology, 2015, 22, 117-128.	6.0	38

#	Article	IF	CITATIONS
19	Hydrogen-deuterium exchange mass spectrometry captures distinct dynamics upon substrate and inhibitor binding to a transporter. Nature Communications, 2020, 11, 6162.	12.8	35
20	ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery. ELife, $2019,8,.$	6.0	32
21	A glimpse into the molecular mechanism of integral membrane proteins through hydrogen–deuterium exchange mass spectrometry. Protein Science, 2020, 29, 1285-1301.	7.6	29
22	Structural basis for isoform-specific kinesin-1 recognition of Y-acidic cargo adaptors. ELife, 2018, 7, .	6.0	26
23	Uncovering the Early Assembly Mechanism for Amyloidogenic \hat{l}^2 2-Microglobulin Using Cross-linking and Native Mass Spectrometry. Journal of Biological Chemistry, 2016, 291, 4626-4637.	3.4	24
24	Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology. Analytical Chemistry, 2020, 92, 10872-10880.	6.5	24
25	Mechanistic insight into the assembly of the HerA–NurA helicase–nuclease DNA end resection complex. Nucleic Acids Research, 2017, 45, 12025-12038.	14.5	23
26	HDX-MS reveals nucleotide-dependent, anti-correlated opening and closure of SecA and SecY channels of the bacterial translocon. ELife, $2019, 8, .$	6.0	20
27	Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. Journal of Proteomics, 2018, 175, 34-41.	2.4	19
28	Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data. Analytical Chemistry, 2020, 92, 10881-10890.	6.5	17
29	Protein–Lipid Interactions Stabilize the Oligomeric State of BOR1p from <i>Saccharomyces cerevisiae</i> . Analytical Chemistry, 2019, 91, 13071-13079.	6.5	14
30	POPPeT: a New Method to Predict the Protection Factor of Backbone Amide Hydrogens. Journal of the American Society for Mass Spectrometry, 2019, 30, 67-76.	2.8	13
31	Hybrid Mass Spectrometry: Towards Characterization of Protein Conformational States. Trends in Biochemical Sciences, 2016, 41, 650-653.	7.5	10
32	Cold Denaturation of Proteins in the Absence of Solvent: Implications for Protein Storage**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
33	Combining Chemical Cross-linking and Mass Spectrometry of Intact Protein Complexes to Study the Architecture of Multi-subunit Protein Assemblies. Journal of Visualized Experiments, 2017, , .	0.3	9
34	Interrogating Membrane Protein Conformational Dynamics within Native Lipid Compositions. Angewandte Chemie, 2017, 129, 15860-15863.	2.0	7
35	Structural predictions of the functions of membrane proteins from HDX-MS. Biochemical Society Transactions, 2020, 48, 971-979.	3.4	7
36	Linking function to global and local dynamics in an elevator-type transporter. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	7

ARGYRIS POLITIS

#	Article	IF	CITATION
37	A Massâ€Spectrometryâ€Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angewandte Chemie, 2018, 130, 17440-17445.	2.0	5
38	An Unusually Rapid Protein Backbone Modification Stabilizes the Essential Bacterial Enzyme MurA. Biochemistry, 2020, 59, 3683-3695.	2.5	5
39	Integrative Mass Spectrometry–Based Approaches for Modeling Macromolecular Assemblies. Methods in Molecular Biology, 2021, 2247, 221-241.	0.9	5
40	Analyzing Protein Architectures and Protein-Ligand Complexes by Integrative Structural Mass Spectrometry. Journal of Visualized Experiments, 2018, , .	0.3	3
41	Improving Peptide Fragmentation for Hydrogen–Deuterium Exchange Mass Spectrometry Using a Time-Dependent Collision Energy Calculator. Journal of the American Society for Mass Spectrometry, 2020, 31, 996-999.	2.8	3
42	Cold Denaturation of Proteins in the Absence of Solvent: Implications for Protein Storage. Angewandte Chemie, 0, , .	2.0	1