
Gianfranco Alpini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5582155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mast cells in liver disease progression: An update on current studies and implications. Hepatology, 2022, 75, 213-218.	3.6	7
2	Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology, 2022, 75, 797-813.	3.6	9
3	Cannabinoid Receptor 1 Antagonism Demonstrates High Therapeutic Potential for the Treatment of Primary Sclerosing Cholangitis. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	2.3	0
4	Organoid Technology: Are Human Cholangiocyte Organoids Immune Protected?. Transplantation, 2022, 106, e249-e249.	0.5	1
5	FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2â^'/â^' Mouse Model of Primary Sclerosing Cholangitis. Hepatology Communications, 2022, 6, 1574-1588.	2.0	2
6	Molecular Mechanisms Linking Risk Factors to Cholangiocarcinoma Development. Cancers, 2022, 14, 1442.	1.7	6
7	The Functional Roles of Immune Cells in Primary Liver Cancer. American Journal of Pathology, 2022, 192, 826-836.	1.9	17
8	Macrophage-Specific SCAP Promotes Liver and Adipose Tissue Damage in a Lean NAFLD Model: Lean, Mean, Proinflammatory Machine. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 236-238.	2.3	1
9	Indole supplementation ameliorates MCD-induced NASH in mice. Journal of Nutritional Biochemistry, 2022, 107, 109041.	1.9	8
10	The protective effects of estrogen on biliary and liver damage are independent of ERâ€Î² signaling in female Mdr2 ^{″â€} mice. FASEB Journal, 2022, 36, .	0.2	0
11	Mast Cells Contribute to Hepatic Neurokinin1 Receptor Signaling, Subsequent Biliary Damage and Peribiliary Fibrosis Via TGFâ€i²1 Signaling in MDR2â€∤―Mouse Model of Primary Scelrosing Cholangitis. FASEB Journal, 2022, 36, .	0.2	0
12	The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells, 2022, 11, 1591.	1.8	6
13	Conjugated Bile Acids activate Reactive Oxygen Speciesâ€p90RSKâ€Vascular Endothelial Growth Factor Receptor 3 signaling axis to promote lymphangiogenesis. FASEB Journal, 2022, 36, .	0.2	0
14	Development and Characterization of Human Primary Cholangiocarcinoma Cell Lines. American Journal of Pathology, 2022, 192, 1200-1217.	1.9	6
15	Mast cells selectively target large cholangiocytes during biliary injury via H2HRâ€mediated cAMP/pERK1/2 signaling. Hepatology Communications, 2022, 6, 2715-2731.	2.0	6
16	The Tumor Microenvironment in Cholangiocarcinoma Progression. Hepatology, 2021, 73, 75-85.	3.6	100
17	Mast Cells Induce Ductular Reaction Mimicking Liver Injury in Mice Through Mast Cell–Derived Transforming Growth Factor Beta 1 Signaling. Hepatology, 2021, 73, 2397-2410.	3.6	30
18	The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. Journal of Pineal Research, 2021, 70, e12699.	3.4	31

#	Article	IF	CITATIONS
19	Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opinion on Investigational Drugs, 2021, 30, 365-375.	1.9	10
20	Organoids and Spheroids as Models for Studying Cholestatic Liver Injury and Cholangiocarcinoma. Hepatology, 2021, 74, 491-502.	3.6	35
21	The Apelin–Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis. Hepatology, 2021, 73, 2411-2428.	3.6	24
22	Fructose Promotion of Intestinal and Liver Injury: A Sugar by Any Other Name That Isn't So Sweet. Hepatology, 2021, 73, 2092-2094.	3.6	4
23	Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells. Laboratory Investigation, 2021, 101, 328-340.	1.7	14
24	Maternal highâ€fat diet disrupted one arbon metabolism in offspring, contributing to nonalcoholic fatty liver disease. Liver International, 2021, 41, 1305-1319.	1.9	15
25	Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatology Communications, 2021, 5, 1125-1137.	2.0	18
26	Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology, 2021, 74, 164-182.	3.6	25
27	Critical alterations in cellular bioenergetics and epithelialâ€mesenchymal transition mediated by crosstalk between tumor cells and lymphatic vasculature augments tumor progression in cholangiocarcinoma. FASEB Journal, 2021, 35, .	0.2	0
28	Cyclic AMP Signaling in Biliary Proliferation: A Possible Target for Cholangiocarcinoma Treatment?. Cells, 2021, 10, 1692.	1.8	8
29	Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes. Hepatology, 2021, 74, 1845-1863.	3.6	16
30	Current Advances in Basic and Translational Research of Cholangiocarcinoma. Cancers, 2021, 13, 3307.	1.7	5
31	Feedback Signaling between Cholangiopathies, Ductular Reaction, and Non-Alcoholic Fatty Liver Disease. Cells, 2021, 10, 2072.	1.8	13
32	Adipocyte inducible 6-phosphofructo-2-kinase suppresses adipose tissue inflammation and promotes macrophage anti-inflammatory activation. Journal of Nutritional Biochemistry, 2021, 95, 108764.	1.9	3
33	Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology, 2021, 74, 2684-2698.	3.6	35
34	Targeting Lymphangiogenesis and Lymph Node Metastasis in Liver Cancer. American Journal of Pathology, 2021, 191, 2052-2063.	1.9	22
35	Phosphorylation and Stabilization of PIN1 by JNK Promote Intrahepatic Cholangiocarcinoma Growth. Hepatology, 2021, 74, 2561-2579.	3.6	13
36	Methionine- and Choline-Deficient Diet–Induced Nonalcoholic Steatohepatitis Is Associated with Increased Intestinal Inflammation. American Journal of Pathology, 2021, 191, 1743-1753.	1.9	15

#	Article	IF	CITATIONS
37	Tumor Lymphatic Interactions Induce CXCR2-CXCL5 Axis and Alter Cellular Metabolism and Lymphangiogenic Pathways to Promote Cholangiocarcinoma. Cells, 2021, 10, 3093.	1.8	12
38	Circadian Rhythm and Melatonin in Liver Carcinogenesis: Updates on Current Findings. Critical Reviews in Oncogenesis, 2021, 26, 69-85.	0.2	5
39	Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Frontiers in Molecular Biosciences, 2021, 8, 803098.	1.6	15
40	Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidaseâ€A/5â€Hydroxytryptamine/5â€Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis. Hepatology, 2020, 71, 990-1008.	3.6	23
41	The emerging role of cellular senescence in renal diseases. Journal of Cellular and Molecular Medicine, 2020, 24, 2087-2097.	1.6	31
42	Maternal diet intervention before pregnancy primes offspring lipid metabolism in liver. Laboratory Investigation, 2020, 100, 553-569.	1.7	21
43	Knockout of the Tachykinin Receptor 1 in the Mdr2â^'/â^' (Abcb4â^'/â^') Mouse Model of Primary Sclerosing Cholangitis Reduces Biliary Damage and Liver Fibrosis. American Journal of Pathology, 2020, 190, 2251-2266.	1.9	9
44	Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury. Hepatology, 2020, 72, 2219-2227.	3.6	18
45	Kupffer Cells. American Journal of Pathology, 2020, 190, 2185-2193.	1.9	80
46	The Role of Lymphatics in Cholestasis: A Comprehensive Review. Seminars in Liver Disease, 2020, 40, 403-410.	1.8	4
47	Adoptive transfer of Pfkfb3-disrupted hematopoietic cells to wild-type mice exacerbates diet-induced hepatic steatosis and inflammation. Liver Research, 2020, 4, 136-144.	0.5	5
48	Hepatocyte Autophagy: Maintaining a Toxicâ€Free Environment. Hepatology, 2020, 72, 371-374.	3.6	3
49	Concise Review: Functional Roles and Therapeutic Potentials of Long Non-coding RNAs in Cholangiopathies. Frontiers in Medicine, 2020, 7, 48.	1.2	8
50	Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment. American Journal of Pathology, 2020, 190, 1018-1029.	1.9	13
51	Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells, 2020, 9, 436.	1.8	7
52	Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling. Laboratory Investigation, 2020, 100, 837-848.	1.7	18
53	Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. Journal of Pineal Research, 2020, 68, e12639.	3.4	63
54	Bile Acid Receptor Therapeutics Effects on Chronic Liver Diseases. Frontiers in Medicine, 2020, 7, 15.	1.2	23

#	Article	IF	CITATIONS
55	Cholangiocarcinoma: novel therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 345-357.	1.5	25
56	Indole Alleviates Dietâ€Induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell 6â€Phosphofructoâ€2â€Kinase/Fructoseâ€2,6â€Biphosphatase 3. Hepatology, 2020, 72, 1191-1203.	3.6	67
57	Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 [/] Mouse Model of Primary Sclerosing Cholangitis. Gene Expression, 2020, 20, 89-103.	0.5	20
58	The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expression, 2020, 20, 77-88.	0.5	16
59	FGF1 receptor antagonist decreases biliary proliferation, fibrosis, and senescence in a mouse model of chronic cholestasis. FASEB Journal, 2020, 34, 1-1.	0.2	0
60	Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology, 2019, 69, 420-430.	3.6	251
61	Antitumor Activity of a Novel Fibroblast Growth Factor Receptor Inhibitor for Intrahepatic Cholangiocarcinoma. American Journal of Pathology, 2019, 189, 2090-2101.	1.9	17
62	Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in earlyâ€stage primary biliary cholangitis. FASEB Journal, 2019, 33, 10269-10279.	0.2	32
63	Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2âr'/âr' mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165557.	1.8	25
64	Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2â^'/â^' mouse model of primary sclerosing cholangitis (PSC). EBioMedicine, 2019, 48, 130-142.	2.7	29
65	Possible application of melatonin treatment in human diseases of the biliary tract. American Journal of Physiology - Renal Physiology, 2019, 317, G651-G660.	1.6	11
66	The challenges of primary biliary cholangitis: What is new and what needs to be done. Journal of Autoimmunity, 2019, 105, 102328.	3.0	86
67	Knockout of α-calcitonin gene-related peptide attenuates cholestatic liver injury by differentially regulating cellular senescence of hepatic stellate cells and cholangiocytes. Laboratory Investigation, 2019, 99, 764-776.	1.7	14
68	Hepatocyteâ€specific and extraâ€hepatocyte actions of perilipinâ€2 during fatty liver disease: benefits of being extra. Journal of Physiology, 2019, 597, 1431-1432.	1.3	2
69	Intercellular Communication between Hepatic Cells in Liver Diseases. International Journal of Molecular Sciences, 2019, 20, 2180.	1.8	48
70	Sphingosine lipid signaling in alcoholic liver injury. Digestive and Liver Disease, 2019, 51, 1164-1165.	0.4	1
71	Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe?. International Journal of Molecular Sciences, 2019, 20, 1869.	1.8	21
72	Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2019, 23, 461-472.	1.5	18

#	Article	IF	CITATIONS
73	Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1525-1539.	1.8	18
74	Hepatitis C Virus Infection and Cholangiocarcinoma. American Journal of Pathology, 2019, 189, 1122-1132.	1.9	21
75	Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethalâ€7 microRNA. Hepatology, 2019, 69, 2562-2578.	3.6	32
76	FXR deficiency and alcoholic liver disease: Tissue is the issue. Digestive and Liver Disease, 2019, 51, 577-578.	0.4	3
77	Role of Non-Coding RNAs in the Progression of Liver Cancer: Evidence from Experimental Models. Cancers, 2019, 11, 1652.	1.7	13
78	Hepatocyte and stellate cell deletion of liver fatty acid binding protein reveals distinct roles in fibrogenic injury. FASEB Journal, 2019, 33, 4610-4625.	0.2	21
79	Functional roles of gut bacteria imbalance in cholangiopathies. Liver Research, 2019, 3, 40-45.	0.5	6
80	Progressive dysfunction of collecting liver lymphatics during the development of extrahepatic cholestasis. FASEB Journal, 2019, 33, 662.64.	0.2	0
81	Functional Role of microRNAs in Patientâ€Derived Xenograft Models of Human Cholangiocarcinoma. FASEB Journal, 2019, 33, 869.21.	0.2	0
82	Biliary epithelium: A neuroendocrine compartment in cholestatic liver disease. Clinics and Research in Hepatology and Gastroenterology, 2018, 42, 296-305.	0.7	18
83	Knockout of l-Histidine Decarboxylase Prevents Cholangiocyte Damage and Hepatic Fibrosis in Mice Subjected to High-Fat Diet Feeding via Disrupted Histamine/Leptin Signaling. American Journal of Pathology, 2018, 188, 600-615.	1.9	30
84	Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology, 2018, 68, 48-61.	3.6	57
85	Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2–/– mice and human cholangiocarcinoma tumorigenesis. Hepatology, 2018, 68, 1042-1056.	3.6	50
86	Mechanisms of cholangiocyte responses to injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1262-1269.	1.8	58
87	Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology, 2018, 155, 1971-1984.e4.	0.6	234
88	A long-term maternal diet transition from high-fat diet to normal fat diet during pre-pregnancy avoids adipose tissue inflammation in next generation. PLoS ONE, 2018, 13, e0209053.	1.1	17
89	Comprehensive Review of Molecular Mechanisms during Cholestatic Liver Injury and Cholangiocarcinoma. Journal of Liver, 2018, 07, .	0.3	6
90	α7-nAChR Knockout Mice Decreases Biliary Hyperplasia and Liver Fibrosis in Cholestatic Bile Duct-Ligated Mice. Gene Expression, 2018, 18, 197-207.	0.5	6

#	Article	IF	CITATIONS
91	Role of lactoferrin and its receptors on biliary epithelium. BioMetals, 2018, 31, 369-379.	1.8	21
92	Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-κB signaling pathway in hepatic stellate cells. American Journal of Physiology - Renal Physiology, 2018, 315, G385-G398.	1.6	24
93	The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1–Mediated Biliary Senescence. American Journal of Pathology, 2018, 188, 2264-2280.	1.9	31
94	Therapeutic Role of Sphingosine-1–Phosphate Receptor 2 in the Progression of Esophageal Adenocarcinoma. American Journal of Pathology, 2018, 188, 1949-1952.	1.9	2
95	Knockout of secretin receptor reduces biliary damage and liver fibrosis in Mdr2â''/â'' mice by diminishing senescence of cholangiocytes. Laboratory Investigation, 2018, 98, 1449-1464.	1.7	41
96	Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2â~'/â~' mice and human primary sclerosing cholangitis. Laboratory Investigation, 2018, 98, 1465-1477.	1.7	29
97	Regulation of adipose tissue inflammation by adenosine 2A receptor in obese mice. Journal of Endocrinology, 2018, 239, 365-376.	1.2	21
98	Opposite effects of knocking out MT1 and MT2 melatonin receptor on senescence and fibrosis of cholangiocytes and hepatic stellate cells during cholestatic liver injury. FASEB Journal, 2018, 32, 415.10.	0.2	0
99	miR-24 Inhibition Increases Menin Expression and Decreases Cholangiocarcinoma Proliferation. American Journal of Pathology, 2017, 187, 570-580.	1.9	29
100	Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells. Hepatology, 2017, 66, 528-541.	3.6	67
101	Knockdown of Hepatic Gonadotropin-Releasing Hormone by Vivo-Morpholino Decreases Liver Fibrosis in Multidrug Resistance Gene 2 Knockout Mice by Down-Regulation of miR-200b. American Journal of Pathology, 2017, 187, 1551-1565.	1.9	14
102	Regulators of Cholangiocyte Proliferation. Gene Expression, 2017, 17, 155-171.	0.5	47
103	Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth. Cancer Letters, 2017, 386, 179-188.	3.2	41
104	Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miRâ€⊇00b downâ€regulation. FASEB Journal, 2017, 31, 4305-4324.	0.2	45
105	The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury. Journal of Biological Chemistry, 2017, 292, 11336-11347.	1.6	57
106	Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice. American Journal of Pathology, 2017, 187, 1093-1105.	1.9	17
107	The role of the secretin/secretin receptor axis in inflammatory cholangiocyte communication via extracellular vesicles. Scientific Reports, 2017, 7, 11183.	1.6	24
108	Diagnostic and therapeutic potentials of microRNAs in cholangiopathies. Liver Research, 2017, 1, 34-41.	0.5	10

#	Article	IF	CITATIONS
109	Secretin-Stimulation of Bicarbonate Secretion Reduces Biliary Damage and Liver Fibrosis in a Model of Primary Biliary Cholangitis (PBC). Gastroenterology, 2017, 152, S1060.	0.6	1
110	Melatonin inhibits hypothalamic gonadotropin-releasing hormone release and reduces biliary hyperplasia and fibrosis in cholestatic rats. American Journal of Physiology - Renal Physiology, 2017, 313, G410-G418.	1.6	12
111	Cyclic GMP-AMP Ameliorates Diet-induced Metabolic Dysregulation and Regulates Proinflammatory Responses Distinctly from STING Activation. Scientific Reports, 2017, 7, 6355.	1.6	20
112	Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells. Scientific Reports, 2017, 7, 17667.	1.6	60
113	Regulation of Cellular Senescence by miR-34a in Alcoholic Liver Injury. American Journal of Pathology, 2017, 187, 2788-2798.	1.9	60
114	Inhibition of microRNA-24 increases liver fibrosis by enhanced menin expression in Mdr2 â^'/â^' mice. Journal of Surgical Research, 2017, 217, 160-169.	0.8	15
115	Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology, 2017, 65, 544-559.	3.6	43
116	Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages. Journal of Hepatology, 2017, 66, 102-115.	1.8	130
117	A Review of the Scaffold Protein Menin and its Role in Hepatobiliary Pathology. Gene Expression, 2017, 17, 251-263.	0.5	10
118	The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Laboratory Investigation, 2017, 97, 843-853.	1.7	43
119	Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway. PLoS ONE, 2016, 11, e0157246.	1.1	50
120	The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factorâ€Î²1 biliary secretion in mice. Hepatology, 2016, 64, 865-879.	3.6	79
121	Lin28 and let-7: roles and regulation in liver diseases. American Journal of Physiology - Renal Physiology, 2016, 310, G757-G765.	1.6	29
122	Pathogenesis of Kupffer Cells in Cholestatic Liver Injury. American Journal of Pathology, 2016, 186, 2238-2247.	1.9	74
123	Inhibition of mast cellâ€secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2â^'/â^' mice. Hepatology, 2016, 64, 1202-1216.	3.6	63
124	Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. Laboratory Investigation, 2016, 96, 1256-1267.	1.7	47
125	Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. American Journal of Physiology - Renal Physiology, 2016, 311, G396-G411.	1.6	31
126	Exosomes in liver pathology. Journal of Hepatology, 2016, 65, 213-221.	1.8	145

#	Article	IF	CITATIONS
127	Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor–Dependent Signaling. American Journal of Pathology, 2016, 186, 123-133.	1.9	61
128	miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. Journal of Hepatology, 2016, 64, 1295-1304.	1.8	70
129	Yes-associated protein in the liver: Regulation of hepatic development, repair, cell fate determination and tumorigenesis. Digestive and Liver Disease, 2015, 47, 826-835.	0.4	23
130	Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. American Journal of Physiology - Renal Physiology, 2015, 309, G865-G873.	1.6	6
131	Liver Regeneration. , 2015, , 229-241.		0
132	Development and functional characterization of extrahepatic cholangiocyte lines from normal rats. Digestive and Liver Disease, 2015, 47, 964-972.	0.4	10
133	Functional and Structural Features of Cholangiocytes in Health and Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 368-380.	2.3	80
134	Profiles of Cancer Stem Cell Subpopulations in Cholangiocarcinomas. American Journal of Pathology, 2015, 185, 1724-1739.	1.9	87
135	Gonadotropin-Releasing Hormone Stimulates Biliary Proliferation by Paracrine/Autocrine Mechanisms. American Journal of Pathology, 2015, 185, 1061-1072.	1.9	18
136	Role of Janus Kinase 3 in Predisposition to Obesity-associated Metabolic Syndrome. Journal of Biological Chemistry, 2015, 290, 29301-29312.	1.6	28
137	Bile acid signaling and biliary functions. Acta Pharmaceutica Sinica B, 2015, 5, 123-128.	5.7	70
138	Functional Role of Cellular Senescence in Biliary Injury. American Journal of Pathology, 2015, 185, 602-609.	1.9	46
139	Functional Role of MicroRNAâ€200 Family in Human Gall Bladder Cancer Stem Cells. FASEB Journal, 2015, 29, 45.7.	0.2	0
140	Evaluation of YAP as a therapeutic target in HCC and CCA. FASEB Journal, 2015, 29, 45.4.	0.2	1
141	Role of Docosahexaenoic Acid Treatment in Improving Liver Histology in Pediatric Nonalcoholic Fatty Liver Disease. PLoS ONE, 2014, 9, e88005.	1.1	106
142	<i>Probiotic Bifidobacterium species: potential beneficial effects in diarrheal disorders</i> . Focus on "Probiotic <i>Bifidobacterium</i> species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells― American Journal of Physiology - Cell Physiology, 2014, 307, C1081-C1083.	2.1	8
143	Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis. American Journal of Physiology - Renal Physiology, 2014, 307, G894-G904.	1.6	31
144	Role of Cholangiocytes in Primary Biliary Cirrhosis. Seminars in Liver Disease, 2014, 34, 273-284.	1.8	37

#	Article	IF	CITATIONS
145	FXR-induced secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Pflugers Archiv European Journal of Physiology, 2014, 466, 1011-1019.	1.3	30
146	Mouse Models of Liver Fibrosis Mimic Human Liver Fibrosis of Different Etiologies. Current Pathobiology Reports, 2014, 2, 143-153.	1.6	24
147	The functional role of micro <scp>RNA</scp> s in alcoholic liver injury. Journal of Cellular and Molecular Medicine, 2014, 18, 197-207.	1.6	106
148	Regulation of the Extrinsic Apoptotic Pathway by MicroRNA-21 in Alcoholic Liver Injury. Journal of Biological Chemistry, 2014, 289, 27526-27539.	1.6	78
149	Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth. American Journal of Physiology - Renal Physiology, 2014, 306, G759-G768.	1.6	24
150	Secretin Stimulates Biliary Cell Proliferation by Regulating Expression of MicroRNA 125b and MicroRNA let7a in Mice. Gastroenterology, 2014, 146, 1795-1808.e12.	0.6	83
151	Molecular mechanisms of stem cell therapy in alcoholic liver disease. Digestive and Liver Disease, 2014, 46, 391-397.	0.4	20
152	Melatonin regulation of biliary functions. Hepatobiliary Surgery and Nutrition, 2014, 3, 35-43.	0.7	8
153	Inhibition of the liver expression of arylalkylamine N-acetyltransferase increases the expression of angiogenic factors in cholangiocytes. Hepatobiliary Surgery and Nutrition, 2014, 3, 4-10.	0.7	5
154	Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity. Hepatobiliary Surgery and Nutrition, 2014, 3, 118-25.	0.7	13
155	Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Experimental Biology and Medicine, 2013, 238, 549-565.	1.1	64
156	Modulation of the biliary expression of arylalkylamine N-acetyltransferase alters the autocrine proliferative responses of cholangiocytes in rats. Hepatology, 2013, 57, 1130-1141.	3.6	41
157	Liver carcinogenesis: Rodent models of hepatocarcinoma and cholangiocarcinoma. Digestive and Liver Disease, 2013, 45, 450-459.	0.4	87
158	GABA induces the differentiation of small into large cholangiocytes by activation of Ca ²⁺ /CaMK I-dependent adenylyl cyclase 8. Hepatology, 2013, 58, 251-263.	3.6	37
159	Neuropeptide Y inhibits biliary hyperplasia of cholestatic rats by paracrine and autocrine mechanisms. American Journal of Physiology - Renal Physiology, 2013, 305, G250-G257.	1.6	10
160	Therapeutic actions of melatonin on gastrointestinal cancer development and progression. Translational Gastrointestinal Cancer, 2013, 2, .	3.0	8
161	The physiological roles of secretin and its receptor. Annals of Translational Medicine, 2013, 1, 29.	0.7	45
162	Functional role of microvesicles in gastrointestinal malignancies. Annals of Translational Medicine, 2013, 1, 4.	0.7	9

#	Article	IF	CITATIONS
163	Autocrine regulation of biliary pathology by activated cholangiocytes. American Journal of Physiology - Renal Physiology, 2012, 302, G473-G483.	1.6	10
164	Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma. Gut, 2012, 61, 753-764.	6.1	69
165	Histamine regulation of biliary proliferation. Journal of Hepatology, 2012, 56, 1204-1206.	1.8	19
166	Yesâ€associated protein regulates the hepatic response after bile duct ligation. Hepatology, 2012, 56, 1097-1107.	3.6	145
167	Epigenetic Regulation of miR-34a Expression in Alcoholic Liver Injury. American Journal of Pathology, 2012, 181, 804-817.	1.9	126
168	Functional analysis of microRNAs in human hepatocellular cancer stem cells. Journal of Cellular and Molecular Medicine, 2012, 16, 160-173.	1.6	115
169	Role of stem cell factor and granulocyte colony-stimulating factor in remodeling during liver regeneration. Hepatology, 2012, 55, 209-221.	3.6	55
170	Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Translational Gastrointestinal Cancer, 2012, 1, 58-70.	3.0	97
171	Mast cells, disease and gastrointestinal cancer: A comprehensive review of recent findings. Translational Gastrointestinal Cancer, 2012, 1, 138-150.	3.0	22
172	Histamine and histamine receptor regulation of gastrointestinal cancers. Translational Gastrointestinal Cancer, 2012, 1, 215-227.	3.0	27
173	Regulation of Biliary Proliferation by Neuroendocrine Factors. American Journal of Pathology, 2011, 178, 472-484.	1.9	31
174	Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. Journal of Hepatology, 2011, 55, 1339-1345.	1.8	117
175	Activation of alpha1-adrenergic receptors stimulate the growth of small mouse cholangiocytes Via calcium-dependent activation of nuclear factor of activated T cells 2 and specificity protein 1. Hepatology, 2011, 53, 628-639.	3.6	34
176	Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology, 2011, 53, 1685-1695.	3.6	180
177	Knockout of the neurokinin-1 receptor reduces cholangiocyte proliferation in bile duct-ligated mice. American Journal of Physiology - Renal Physiology, 2011, 301, G297-G305.	1.6	35
178	Melatonin exerts by an autocrine loop antiproliferative effects in cholangiocarcinoma; its synthesis is reduced favoring cholangiocarcinoma growth. American Journal of Physiology - Renal Physiology, 2011, 301, G623-G633.	1.6	46
179	Identification and Functional Characterization of TMEM16A, a Ca2+-activated Clâ^' Channel Activated by Extracellular Nucleotides, in Biliary Epithelium. Journal of Biological Chemistry, 2011, 286, 766-776.	1.6	88
180	Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors. American Journal of Physiology - Renal Physiology, 2011, 301, G634-G643.	1.6	53

#	Article	IF	CITATIONS
181	Neuropeptide Y inhibits cholangiocarcinoma cell growth and invasion. American Journal of Physiology - Cell Physiology, 2011, 300, C1078-C1089.	2.1	27
182	Knockout of secretin receptor reduces large cholangiocyte hyperplasia in mice with extrahepatic cholestasis induced by bile duct ligation. Hepatology, 2010, 52, 204-214.	3.6	79
183	Adenosine triphosphate release and purinergic (P2) receptor-mediated secretion in small and large mouse cholangiocytes. Hepatology, 2010, 52, 1819-1828.	3.6	43
184	Introduction to Mini-Symposium on Cholangiocyte Pathophysiology—Part I. Digestive and Liver Disease, 2010, 42, 237.	0.4	0
185	Taurocholic acid prevents biliary damage induced by hepatic artery ligation in cholestatic rats. Digestive and Liver Disease, 2010, 42, 709-717.	0.4	15
186	After Damage of Large Bile Ducts by Gamma-Aminobutyric Acid, Small Ducts Replenish the Biliary Tree by Amplification of Calcium-Dependent Signaling and de Novo Acquisition of Large Cholangiocyte Phenotypes. American Journal of Pathology, 2010, 176, 1790-1800.	1.9	68
187	The Ca2+â€activated Cl―channel TMEM16A represents the effector pathway for purinergic receptorâ€mediated secretion in liver epithelium FASEB Journal, 2010, 24, 610.16.	0.2	Ο
188	H3 Histamine Receptor–Mediated Activation of Protein Kinase Cα Inhibits the Growth of Cholangiocarcinoma <i>In vitro</i> and <i>In vivo</i> . Molecular Cancer Research, 2009, 7, 1704-1713.	1.5	60
189	Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. American Journal of Physiology - Renal Physiology, 2009, 297, G11-G26.	1.6	61
190	Cholangiocyte proliferation and liver fibrosis. Expert Reviews in Molecular Medicine, 2009, 11, e7.	1.6	167
191	Diferentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology, 2009, 50, 244-252.	3.6	52
192	Activation of the cholehepatic shunt as a potential therapy for primary sclerosing cholangitis. Hepatology, 2009, 49, 1795-1797.	3.6	23
193	Chapter 18 Changes in the Endocannabinoid System May Give Insight into new and Effective Treatments for Cancer. Vitamins and Hormones, 2009, 81, 469-485.	0.7	23
194	Serotonin Metabolism Is Dysregulated in Cholangiocarcinoma, which Has Implications for Tumor Growth. Cancer Research, 2008, 68, 9184-9193.	0.4	90
195	Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP ₃ /CaMK I/CREB pathway. American Journal of Physiology - Cell Physiology, 2008, 295, C499-C513.	2.1	125
196	The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway. American Journal of Physiology - Renal Physiology, 2008, 295, G1150-G1158.	1.6	73
197	Anandamide inhibits cholangiocyte hyperplastic proliferation via activation of thioredoxin 1/redox factor 1 and AP-1 activation. American Journal of Physiology - Renal Physiology, 2008, 294, G506-G519.	1.6	50
198	Leptin Enhances Cholangiocarcinoma Cell Growth. Cancer Research, 2008, 68, 6752-6761.	0.4	77

#	Article	IF	CITATIONS
199	The α ₂ -adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. American Journal of Physiology - Cell Physiology, 2007, 293, C1252-C1262.	2.1	30
200	Opposing Actions of Endocannabinoids on Cholangiocarcinoma Growth. Journal of Biological Chemistry, 2007, 282, 13098-13113.	1.6	96
201	Molecular pathology of biliary tract cancers. Cancer Letters, 2007, 250, 155-167.	3.2	45
202	Proliferating Cholangiocytes: A Neuroendocrine Compartment in the Diseased Liver. Gastroenterology, 2007, 132, 415-431.	0.6	264
203	H3 histamine receptor agonist inhibits biliary growth of BDL rats by downregulation of the cAMP-dependent PKA/ERK1/2/ELK-1 pathway. Laboratory Investigation, 2007, 87, 473-487.	1.7	77
204	Differential Regulation of Cholangiocyte Growth by Activation of Different Histamine Receptor Subtypes. FASEB Journal, 2007, 21, A1324.	0.2	0
205	Taurocholic acid feeding prevents tumor necrosis factor-alpha-induced damage of cholangiocytes by a PI3K-mediated pathway. Experimental Biology and Medicine, 2007, 232, 942-9.	1.1	12
206	Ca2+-Dependent Cytoprotective Effects of Ursodeoxycholic and Tauroursodeoxycholic Acid on the Biliary Epithelium in a Rat Model of Cholestasis and Loss of Bile Ducts. American Journal of Pathology, 2006, 168, 398-409.	1.9	68
207	Vascular Endothelial Growth Factor Stimulates Rat Cholangiocyte Proliferation Via an Autocrine Mechanism. Gastroenterology, 2006, 130, 1270-1282.	0.6	188
208	Estrogens and the pathophysiology of the biliary tree. World Journal of Gastroenterology, 2006, 12, 3537.	1.4	113
209	Bile acid interactions with cholangiocytes. World Journal of Gastroenterology, 2006, 12, 3553.	1.4	147
210	Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats. American Journal of Physiology - Renal Physiology, 2006, 291, G307-G317.	1.6	67
211	Heterogeneity of the intrahepatic biliary epithelium. World Journal of Gastroenterology, 2006, 12, 3523.	1.4	75
212	Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology, 2005, 41, 1037-1045.	3.6	62
213	γ-Aminobutyric Acid Inhibits Cholangiocarcinoma Growth by Cyclic AMP–Dependent Regulation of the Protein Kinase A/Extracellular Signal-Regulated Kinase 1/2 Pathway. Cancer Research, 2005, 65, 11437-11446.	0.4	85
214	Tauroursodeoxycholate inhibits human cholangiocarcinoma growth via Ca2+-, PKC-, and MAPK-dependent pathways. American Journal of Physiology - Renal Physiology, 2004, 286, G973-G982.	1.6	52
215	Nerve growth factor modulates the proliferative capacity of the intrahepatic biliary epithelium in experimental cholestasis. Gastroenterology, 2004, 127, 1198-1209.	0.6	87
216	cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. Journal of Hepatology, 2004, 41, 528-537.	1.8	110

#	Article	IF	CITATIONS
217	Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver International, 2003, 23, 449-459.	1.9	109
218	Development and characterization of secretin-stimulated secretion of cultured rat cholangiocytes. American Journal of Physiology - Renal Physiology, 2003, 284, G1066-G1073.	1.6	25
219	Increased susceptibility of cholangiocytes to tumor necrosis factor-α cytotoxicity after bile duct ligation. American Journal of Physiology - Cell Physiology, 2003, 285, C183-C194.	2.1	52
220	Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct-ligated rats. American Journal of Physiology - Renal Physiology, 2003, 284, G837-G852.	1.6	46
221	Taurocholate feeding prevents CCl ₄ -induced damage of large cholangiocytes through Pl3-kinase-dependent mechanism. American Journal of Physiology - Renal Physiology, 2003, 284, G290-G301.	1.6	35
222	Functional Heterogeneity of Cholangiocytes. Seminars in Liver Disease, 2002, 22, 227-240.	1.8	99
223	Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase–dependent pathway in rats. Gastroenterology, 2002, 123, 1226-1237.	0.6	74
224	Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology, 2002, 35, 1041-1052.	3.6	122
225	Stimulation of α2 -adrenergic receptor inhibits cholangiocarcinoma growth through modulation of Raf-1 and B-Raf activities. Hepatology, 2002, 35, 1329-1340.	3.6	55
226	The pathobiology of biliary epithelia. Hepatology, 2002, 35, 1256-1268.	3.6	135
227	Intracellular pathways mediating estrogen-induced cholangiocyte proliferation in the rat. Hepatology, 2002, 36, 297-304.	3.6	101
228	Gastrin inhibits cholangiocarcinoma growth through increased apoptosis by activation of Ca2+-dependent protein kinase C-α. Journal of Hepatology, 2001, 34, 284-291.	1.8	70
229	Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. American Journal of Physiology - Renal Physiology, 2001, 281, G182-G190.	1.6	89
230	Regulation of cholangiocyte bicarbonate secretion. American Journal of Physiology - Renal Physiology, 2001, 281, G612-G625.	1.6	138
231	Regulation of cholangiocyte proliferation. Liver, 2001, 21, 73-80.	0.1	85
232	Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology, 2001, 34, 868-876.	3.6	110
233	Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology, 2000, 31, 555-561.	3.6	139
234	Gastrin inhibits cholangiocyte growth in bile duct–ligated rats by interaction with cholecystokinin-B/gastrin receptors viaD -myo-inositol 1,4,5-triphosphate–, Ca2+-, and protein kinase Cα–dependent mechanisms. Hepatology, 2000, 32, 17-25.	3.6	96

#	Article	IF	CITATIONS
235	The function of alkaline phosphatase in the liver: Regulation of intrahepatic biliary epithelium secretory activities in the rat. Hepatology, 2000, 32, 174-184.	3.6	67
236	Acute carbon tetrachloride feeding induces damage of large but not small cholangiocytes from BDL rat liver. American Journal of Physiology - Renal Physiology, 1999, 276, G1289-G1301.	1.6	94
237	Acute carbon tetrachloride feeding selectively damages large, but not small, cholangiocytes from normal rat liver. Hepatology, 1999, 29, 307-319.	3.6	105
238	Bile acid feeding induces cholangiocyte proliferation and secretion: Evidence for bile acid–regulated ductal secretion. Gastroenterology, 1999, 116, 179-186.	0.6	153
239	Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct–ligated rats. Gastroenterology, 1999, 117, 191-199.	0.6	155
240	Heterogeneity of the proliferative capacity of rat cholangiocytes after bile duct ligation. American Journal of Physiology - Renal Physiology, 1998, 274, G767-G775.	1.6	119
241	Gastrin inhibits secretin-induced ductal secretion by interaction with specific receptors on rat cholangiocytes. American Journal of Physiology - Renal Physiology, 1997, 273, G1061-G1070.	1.6	58