
Giovanni Pagano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/558199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 2015, 115, 40-48.	2.9	412
2	Rare earth elements in human and animal health: State of art and research priorities. Environmental Research, 2015, 142, 215-220.	3.7	235
3	In vivo accumulation of 8-hydroxy-2'-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis, 1995, 16, 735-742.	1.3	147
4	Oxidative Stress and Mitochondrial Dysfunction across Broad-Ranging Pathologies: Toward Mitochondria-Targeted Clinical Strategies. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-27.	1.9	108
5	Human exposures to rare earth elements: Present knowledge and research prospects. Environmental Research, 2019, 171, 493-500.	3.7	107
6	Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology, 2010, 11, 401-419.	2.0	106
7	Oxidative Stress and Mitochondrial Dysfunction in Down Syndrome. Advances in Experimental Medicine and Biology, 2012, 724, 291-299.	0.8	100
8	Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos. Chemosphere, 2010, 81, 194-198.	4.2	94
9	Spermiotoxicity and embryotoxicity of heavy metals in the echinoid <i>Paracentrotus lividus</i> . Environmental Toxicology and Chemistry, 1996, 15, 1931-1936.	2.2	88
10	Fertilization and larval development in sea urchins following exposure of gametes and embryos to cadmium. Archives of Environmental Contamination and Toxicology, 1982, 11, 47-55.	2.1	83
11	Review of Rare Earth Elements as Fertilizers and Feed Additives: A Knowledge Gap Analysis. Archives of Environmental Contamination and Toxicology, 2021, 81, 531-540.	2.1	76
12	Multiple evidence for an early age pro-oxidant state in Down Syndrome patients. Biogerontology, 2006, 7, 211-220.	2.0	70
13	Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. Environmental Research, 2016, 147, 453-460.	3.7	70
14	The effects of hexavalent and trivalent chromium on fertilization and development in sea urchins. Environmental Research, 1983, 30, 442-452.	3.7	66
15	Fanconi anaemia proteins: Major roles in cell protection against oxidative damage. BioEssays, 2003, 25, 589-595.	1.2	66
16	Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. European Journal of Haematology, 2005, 75, 93-100.	1.1	65
17	Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae. Chemosphere, 2005, 61, 208-217.	4.2	64
18	Microplastic-induced damage in early embryonal development of sea urchin Sphaerechinus granularis. Environmental Research, 2019, 179, 108815.	3.7	63

GIOVANNI PAGANO

#	Article	IF	CITATIONS
19	Vegetable and synthetic tannins induce hormesis/toxicity in sea urchin early development and in algal growth. Environmental Pollution, 2007, 146, 46-54.	3.7	57
20	Oxidative stress in Fanconi anaemia: from cells and molecules towards prospects in clinical management. Biological Chemistry, 2012, 393, 11-21.	1.2	57
21	Multi-species toxicity evaluation of a chromium-based leather tannery wastewater. Desalination, 2007, 211, 48-57.	4.0	51
22	SjÃ,gren's syndrome-associated oxidative stress and mitochondrial dysfunction: Prospects for chemoprevention trials. Free Radical Research, 2013, 47, 71-73.	1.5	51
23	The role of oxidative stress in developmental and reproductive toxicity of tamoxifen. Life Sciences, 2001, 68, 1735-1749.	2.0	50
24	Comparative toxicity of seven rare earth elements in sea urchin early life stages. Environmental Science and Pollution Research, 2017, 24, 20803-20810.	2.7	50
25	Gender- and age-related distinctions for the in vivo prooxidant state in Fanconi anaemia patients. Carcinogenesis, 2004, 25, 1899-1909.	1.3	44
26	In vivoprooxidant state in Werner syndrome (WS): Results from three WS patients and two WS heterozygotes. Free Radical Research, 2005, 39, 529-533.	1.5	44
27	Redox-dependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis, 2000, 21, 213-220.	1.3	42
28	pH-Induced changes in mitotic and developmental patterns in sea urchin embryogenesis. I. Exposure of embryos. Teratogenesis, Carcinogenesis, and Mutagenesis, 1985, 5, 101-112.	0.8	39
29	Multiple Involvement of Oxidative Stress in Werner Syndrome Phenotype. Biogerontology, 2005, 6, 233-243.	2.0	39
30	Effects on sea urchin fertilization and embryogenesis of water and sediment from two rivers in Campania, Italy. Archives of Environmental Contamination and Toxicology, 1993, 25, 20.	2.1	37
31	Sea Urchin Bioassays in Toxicity Testing: I. Inorganics, Organics, Complex Mixtures and Natural Products. Expert Opinion on Environmental Biology, 2017, 06, .	0.2	33
32	Toxicity of Bauxite Manufacturing By-products in Sea Urchin Embryos. Ecotoxicology and Environmental Safety, 2002, 51, 28-34.	2.9	31
33	Comparative toxicities of aluminum and zinc from sacrificial anodes or from sulfate salt in sea urchin embryos and sperm. Ecotoxicology and Environmental Safety, 2010, 73, 1138-1143.	2.9	30
34	Oxidative stress-related mechanisms are associated with xenobiotics exerting excess toxicity to Fanconi anemia cells Environmental Health Perspectives, 2003, 111, 1699-1703.	2.8	28
35	Sublethal pH decrease may cause genetic damage to eukaryotic cell: A study on sea urchins andSalmonella typhimurium. Teratogenesis, Carcinogenesis, and Mutagenesis, 1986, 6, 275-287.	0.8	27
36	Heavy rare earth elements affect early life stages in Paracentrotus lividus and Arbacia lixula sea urchins. Environmental Research, 2017, 154, 240-246.	3.7	25

GIOVANNI PAGANO

#	Article	IF	CITATIONS
37	Different patterns of in vivo pro-oxidant states in a set of cancer- or aging-related genetic diseases. Free Radical Biology and Medicine, 2008, 44, 495-503.	1.3	24
38	From clinical description, to in vitro and animal studies, and backward to patients: Oxidative stress and mitochondrial dysfunction in Fanconi anemia. Free Radical Biology and Medicine, 2013, 58, 118-125.	1.3	24
39	Mild toxicity of polystyrene and polymethylmethacrylate microplastics in Paracentrotus lividus early life stages. Marine Environmental Research, 2020, 161, 105132.	1.1	21
40	Damaged mitochondria in Fanconi anemia - an isolated event or a general phenomenon?. Oncoscience, 2014, 1, 287-295.	0.9	21
41	Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials. International Journal of Molecular Sciences, 2014, 15, 20169-20208.	1.8	20
42	In Vitro Hypersensitivity to Oxygen of Fanconi Anemia (FA) Cells Is Linked to Ex Vivo Evidence for Oxidative Stress in FA Homozygotes and Heterozygotes. Blood, 1997, 89, 1111-1111.	0.6	19
43	Bone marrow cell transcripts from Fanconi anaemia patients reveal <i>in vivo</i> alterations in mitochondrial, redox and <scp>DNA</scp> repair pathways. European Journal of Haematology, 2013, 91, 141-151.	1.1	19
44	Heavy Rare Earth Elements Affect Sphaerechinus granularis Sea Urchin Early Life Stages by Multiple Toxicity Endpoints. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 641-646.	1.3	19
45	Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtures. International Journal of Molecular Sciences, 2020, 21, 7060.	1.8	19
46	Potential roles of mitochondrial cofactors in the adjuvant mitigation of proinflammatory acute infections, as in the case of sepsis and COVID-19 pneumonia. Inflammation Research, 2021, 70, 159-170.	1.6	17
47	Prospects for nutritional interventions in the clinical management of Fanconi anemia. Cancer Causes and Control, 2000, 11, 881-889.	0.8	15
48	Bauxite manufacturing residues from Gardanne (France) and Portovesme (Italy) exert different patterns of pollution and toxicity to sea urchin embryos. Environmental Toxicology and Chemistry, 2002, 21, 1272-1278.	2.2	15
49	Glutathione levels in blood from ataxia telangiectasia patients suggest in vivo adaptive mechanisms to oxidative stress. Clinical Biochemistry, 2007, 40, 666-670.	0.8	15
50	Soil pollution and toxicity in an area affected by emissions from a bauxite processing plant and a power plant in Gardanne (southern France). Ecotoxicology and Environmental Safety, 2019, 170, 55-61.	2.9	14
51	Sea Urchin Bioassays in Toxicity Testing: II. Sediment Evaluation. Expert Opinion on Environmental Biology, 2017, 06, .	0.2	12
52	Lâ€Methionine Induces Stageâ€Dependent Changes of Differentiation and Oxidative Activity in Sea Urchin Embryogenesis. Basic and Clinical Pharmacology and Toxicology, 1997, 81, 134-143.	0.0	11
53	Oxidative stress biomarkers in four Bloom syndrome (BS) patients and in their parents suggest in vivo redox abnormalities in BS phenotype. Clinical Biochemistry, 2007, 40, 1100-1103.	0.8	11
54	Fanconi anemia (FA) and crosslinker sensitivity: Reâ€appraising the origins of FA definition. Pediatric Blood and Cancer, 2015, 62, 1137-1143.	0.8	11

GIOVANNI PAGANO

#	Article	IF	CITATIONS
55	Topsoil and urban dust pollution and toxicity in Taranto (southern Italy) industrial area and in a residential district. Environmental Monitoring and Assessment, 2019, 191, 43.	1.3	11
56	Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies. Translational Research, 2021, 229, 135-141.	2.2	11
57	Cerium, gadolinium, lanthanum, and neodymium effects in simplified acid mine discharges to Raphidocelis subcapitata, Lepidium sativum, and Vicia faba. Science of the Total Environment, 2021, 787, 147527.	3.9	8
58	Evaluation of Rare Earth Element-Associated Hormetic Effects in Candidate Fertilizers and Livestock Feed Additives. Biological Trace Element Research, 2023, 201, 2573-2581.	1.9	8
59	Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cellular and Molecular Life Sciences, 2021, 78, 7491-7503.	2.4	7
60	Mitoprotective Clinical Strategies in Type 2 Diabetes and Fanconi Anemia Patients: Suggestions for Clinical Management of Mitochondrial Dysfunction. Antioxidants, 2020, 9, 82.	2.2	6
61	Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management. Redox Biology, 2021, 40, 101860.	3.9	5
62	Complex Mixture-Associated Hormesis and Toxicity: The Case of Leather Tanning Industry. Dose-Response, 2008, 6, dose-response.0.	0.7	4
63	Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Letters, 2021, 503, 185-196.	3.2	4
64	Cytogenetic and developmental toxicity of bisphenol A and bisphenol S in Arbacia lixula sea urchin embryos. Ecotoxicology, 2022, 31, 1087-1095.	1.1	3
65	Bauxite manufacturing residues from Gardanne (France) and Portovesme (Italy) exert different patterns of pollution and toxicity to sea urchin embryos. Environmental Toxicology and Chemistry, 2002, 21, 1272-8.	2.2	2
66	Oxidative Stress in Cancer-Prone Diseases. , 2006, , 761-788.		0
67	Toxicity evolution of alum-coagulated municipal wastewater to sea urchin embryogenesis and fertilization. Desalination and Water Treatment, 2014, 52, 3004-3011.	1.0	0
68	Biotransformation and Mechanism of Action of Xenobiotics What Lessons from the Past 40 Years?. CRC Series in Modern Nutrition Science, 2004, , .	0.0	0
69	Fanconi Anaemia and Oxidative Stress. , 2006, , 82-91.		0