
Anatoli Serghei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5581470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ coupled mechanical/electrical investigations of EPDM/CB composite materials: The electrical signature of the mechanical Mullins effect. Composites Science and Technology, 2022, 218, 109144.	3.8	9
2	Enhanced electromagnetic interference shielding effectiveness of polypropylene/hybrid metallic fillers composite materials by coalescence-driven guided electrical percolation. Polymer, 2022, 246, 124740.	1.8	6
3	Universal behavior for electromagnetic interference shielding effectiveness of polymer based composite materials. Composites Science and Technology, 2022, 221, 109351.	3.8	25
4	Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of composite materials: Scaling laws and applications. Journal of Composite Materials, 2022, 56, 3197-3217.	1.2	19
5	In-situ coupled mechanical/electrical investigations on conductive TPU/CB composites: Impact of thermo-mechanically induced structural reorganizations of soft and hard TPU domains on the coupled electro-mechanical properties. Polymer, 2022, 256, 125147.	1.8	5
6	A protocol to measure slow protein dynamics of the cholera toxin B pentamers using broadband dielectric spectroscopy. STAR Protocols, 2022, 3, 101561.	0.5	0
7	The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. Journal of Industrial and Engineering Chemistry, 2021, 96, 1-33.	2.9	28
8	Droplet relaxation of molten metals in polypropylene matrix: Measurement of the interfacial tension. Journal of Rheology, 2021, 65, 391-404.	1.3	1
9	Experimental diagnostic of sequence-variant dynamic perturbations revealed by broadband dielectric spectroscopy. Structure, 2021, 29, 1419-1429.e3.	1.6	4
10	Viscoelastic behaviour of highly filled polypropylene with solid and liquid Tin microparticles: influence of the stearic acid additive. Rheologica Acta, 2021, 60, 661-673.	1.1	5
11	Electrical conductivity under shear flow of molten polyethylene filled with carbon nanotubes: Experimental and modeling. Polymer Engineering and Science, 2021, 61, 1129-1138.	1.5	3
12	Imidazolium-based poly(ionic liquid)/ionic liquid solutions: Rheology, structuration and ionic transport properties. Polymer, 2021, 237, 124305.	1.8	6
13	Synthesis and Structure/Properties Correlations of Fluorinated Poly(1,2,3-triazolium)s. Chemistry Africa, 2020, 3, 759-768.	1.2	2
14	Polypropylene/carbon nanotubes composite materials with enhanced electromagnetic interference shielding performance: Properties and modeling. Composites Part B: Engineering, 2020, 189, 107866.	5.9	65
15	Comparison of poly(ethylene glycol)-based networks obtained by cationic ring opening polymerization of neutral and 1,2,3-triazolium diepoxy monomers. Polymer Chemistry, 2020, 11, 1894-1905.	1.9	9
16	Unveiling the Effects of In Situ Layer–Layer Interfacial Reaction in Multilayer Polymer Films via Multilayered Assembly: From Microlayers to Nanolayers. Macromolecular Materials and Engineering, 2020, 305, 2000076.	1.7	12
17	Analysis of Nanoconfined Protein Dielectric Signals Using Charged Amino Acid Network Models. Australian Journal of Chemistry, 2020, 73, 803.	0.5	3
18	Exchange Process in the Dielectric Loss of Molecular and Macromolecular Ionic Conductors in the Interfacial Layers Formed by Electrode Polarization Effects. Journal of Physical Chemistry B, 2019, 123, 8532-8542.	1.2	5

#	Article	IF	CITATIONS
19	Fully Biosourced Materials from Combination of Choline Chloride-Based Deep Eutectic Solvents and Guar Gum. ACS Sustainable Chemistry and Engineering, 2019, 7, 16747-16756.	3.2	34
20	Main hain poly(1,2,3â€ŧriazolium hydroxide)s obtained through AA+BB click polyaddition as anion exchange membranes. Polymer International, 2019, 68, 1591-1598.	1.6	11
21	Polymer bilayers with enhanced dielectric permittivity and low dielectric losses by Maxwell–Wagner–Sillars interfacial polarization: Characteristic frequencies and scaling laws. Journal of Applied Polymer Science, 2019, 136, 47551.	1.3	24
22	Experimental Protein Molecular Dynamics: Broadband Dielectric Spectroscopy coupled with nanoconfinement. Scientific Reports, 2019, 9, 17988.	1.6	11
23	Partially Biosourced Poly(1,2,3-triazolium)-Based Diblock Copolymers Derived from Levulinic Acid. Macromolecules, 2018, 51, 5820-5830.	2.2	17
24	A 1,2,3-triazolate lithium salt with ionic liquid properties at room temperature. Chemical Communications, 2018, 54, 9035-9038.	2.2	8
25	Fluorinated Poly(ionic liquid) Diblock Copolymers Obtained by Cobalt-Mediated Radical Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 121-126.	2.3	54
26	1,2,3-Triazolium-based linear ionic polyurethanes. Polymer Chemistry, 2017, 8, 5148-5156.	1.9	14
27	Cationic and dicationic 1,2,3-triazolium-based poly(ethylene glycol ionic liquid)s. Polymer Chemistry, 2017, 8, 910-917.	1.9	22
28	Guar gum as biosourced building block to generate highly conductive and elastic ionogels with poly(ionic liquid) and ionic liquid. Carbohydrate Polymers, 2017, 157, 586-595.	5.1	23
29	1,2,3â€Triazoliumâ€Based Epoxy–Amine Networks: Ion onducting Polymer Electrolytes. Macromolecular Rapid Communications, 2016, 37, 1168-1174.	2.0	31
30	Probing the effect of anion structure on the physical properties of cationic 1,2,3â€ŧriazoliumâ€based poly(ionic liquid)s. Journal of Polymer Science Part A, 2016, 54, 2191-2199.	2.5	21
31	Chitosan-dithiooxamide-grafted rGO sheets decorated with Au nanoparticles: Synthesis, characterization and properties. European Polymer Journal, 2016, 78, 153-162.	2.6	9
32	Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. European Polymer Journal, 2016, 84, 65-76.	2.6	35
33	Enhanced Ionic Conductivity of a 1,2,3-Triazolium-Based Poly(siloxane ionic liquid) Homopolymer. ACS Macro Letters, 2016, 5, 1283-1286.	2.3	70
34	Synthesis and characterization of Au-immobilized nanoparticles onto cellulose-ethylenediamine-grafted reduced graphite oxide sheets. Materials Chemistry and Physics, 2016, 171, 303-311.	2.0	7
35	Two-step formation mechanism of Acetobacter cellulosic biofilm: synthesis of sparse and compact cellulose. Cellulose, 2016, 23, 1087-1100.	2.4	14
36	Biosourced 1,2,3-triazolium ionic liquids derived from isosorbide. New Journal of Chemistry, 2016, 40, 740-747.	1.4	17

#	Article	IF	CITATIONS
37	Unconventional poly(ionic liquid)s combining motionless main chain 1,2,3-triazolium cations and high ionic conductivity. Polymer Chemistry, 2015, 6, 4299-4308.	1.9	44
38	Nanofluidics Approach to Separate between Static and Kinetic Nanoconfinement Effects on the Crystallization of Polymers. Nano Letters, 2015, 15, 4311-4316.	4.5	27
39	Poly(vinyl ester 1,2,3-triazolium)s: a new member of the poly(ionic liquid)s family. Chemical Communications, 2015, 51, 3332-3335.	2.2	47
40	Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. Journal of Chemical Physics, 2015, 142, 194703.	1.2	224
41	Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C–N Bonds. Journal of the American Chemical Society, 2015, 137, 6078-6083.	6.6	407
42	Triethylene glycol-based poly(1,2,3-triazolium acrylate)s with enhanced ionic conductivity. Polymer Chemistry, 2015, 6, 3521-3528.	1.9	40
43	Expanding the structural variety of poly(1,2,3-triazolium)s obtained by simultaneous 1,3-dipolar Huisgen polyaddition and N-alkylation. Polymer, 2015, 79, 309-315.	1.8	22
44	Investigations of Nitrile Rubber Composites Containing Imidazolium Ionic Liquids. Macromolecular Symposia, 2014, 341, 18-25.	0.4	11
45	Properties of Carboxylated Nitrile Rubber/Hydrotalcite Composites Containing Imidazolium Ionic Liquids. Macromolecular Symposia, 2014, 341, 7-17.	0.4	17
46	Improving the Ionic Conductivity of Carboxylated Nitrile Rubber/LDH Composites by Adding Imidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. Macromolecular Symposia, 2014, 342, 35-45.	0.4	5
47	1,2,3-Triazolium-Based Poly(ionic liquid)s with Enhanced Ion Conducting Properties Obtained through a Click Chemistry Polyaddition Strategy. Chemistry of Materials, 2014, 26, 1720-1726.	3.2	121
48	Accelerated Solvent―and Catalystâ€Free Synthesis of 1,2,3â€Triazoliumâ€Based Poly(Ionic Liquid)s. Macromolecular Rapid Communications, 2014, 35, 794-800.	2.0	46
49	Pentadecane functionalized graphite oxide sheets as a tool for the preparation of electrical conductive polyethylene/graphite oxide composites. Polymer, 2014, 55, 22-28.	1.8	19
50	1,2,3â€Triazoliumâ€Based Poly(ionic liquid)s Obtained Through Click Chemistry Polyaddition. Macromolecular Chemistry and Physics, 2014, 215, 2229-2236.	1.1	38
51	Study on Weather Aging of Nitrile Rubber Composites Containing Imidazolium Ionic Liquids. Macromolecular Symposia, 2014, 342, 25-34.	0.4	11
52	Nanoporous Polycyanurates Created by Chemicallyâ€Induced Phase Separation: Structureâ€Property Relationships. Macromolecular Symposia, 2014, 341, 57-66.	0.4	4
53	Interfacial polarization in composite materials with spherical fillers: characteristic frequencies and scaling laws. Colloid and Polymer Science, 2014, 292, 1977-1988.	1.0	20
54	The impact of imidazolium ionic liquids on the properties of nitrile rubber composites. European Polymer Journal, 2014, 53, 139-146.	2.6	32

#	Article	IF	CITATIONS
55	1,2,3-Triazolium-based poly(acrylate ionic liquid)s. Polymer, 2014, 55, 3314-3319.	1.8	37
56	Enhancing Properties of Anionic Poly(ionic liquid)s with 1,2,3-Triazolium Counter Cations. ACS Macro Letters, 2014, 3, 658-662.	2.3	52
57	Curie Transitions for Attograms of Ferroelectric Polymers. Nano Letters, 2013, 13, 577-580.	4.5	19
58	Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polymer Composites, 2013, 34, 778-786.	2.3	55
59	Mainâ€chain 1,2,3â€triazoliumâ€based poly(ionic liquid)s issued from AB + AB click chemistry polyaddition. Journal of Polymer Science Part A, 2013, 51, 34-38.	2.5	79
60	Effect of imidazolium ionic liquid type on the properties of nitrile rubber composites. Polymer International, 2013, 62, 1575-1582.	1.6	26
61	Nanofluidics with phase separated block-copolymers: Glassy dynamics during capillary flow. European Physical Journal: Special Topics, 2010, 189, 95-101.	1.2	6
62	Density Fluctuations and Phase Transitions of Ferroelectric Polymer Nanowires. Small, 2010, 6, 1822-1826.	5.2	31
63	Glassy Dynamics and Glass Transition in Nanometric Thin Layers of Polystyrene. Macromolecules, 2010, 43, 9937-9944.	2.2	203
64	Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 382 2.2	2 Td (fluoride-< 147
65	Segmental dynamics of polymers during capillary flow into nanopores. Soft Matter, 2010, 6, 1111.	1.2	37
66	Glassy Dynamics and Glass Transition in Thin Polymer Layers of PMMA Deposited on Different Substrates. Macromolecules, 2010, 43, 7729-7733.	2.2	94
67	The glass transition of thin polymer films in relation to the interfacial dynamics. Journal of Chemical Physics, 2009, 131, 154904.	1.2	58
68	Electrode polarization and charge transport at solid interfaces. Physical Review B, 2009, 80, .	1.1	233
69	Universal scaling of charge transport in glass-forming ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 913-916.	1.3	91
70	Metastable States of Glassy Dynamics, Possibly Mimicking Confinementâ€Effects in Thin Polymer Films. Macromolecular Chemistry and Physics, 2008, 209, 810-817.	1.1	85
71	Challenges in Glassy Dynamics of Polymers. Macromolecular Chemistry and Physics, 2008, 209, 1415-1423.	1.1	30
72	Charge transport and glassy dynamics in imidazole-based liquids. Journal of Chemical Physics, 2008, 129, 234511.	1.2	59

#	Article	IF	CITATIONS
73	Electrical conductivity and translational diffusion in the 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. Journal of Chemical Physics, 2008, 128, 214509.	1.2	115
74	Classy Dynamics in Thin Polymer Layers Having a Free Upper Interface. Macromolecules, 2008, 41, 3636-3639.	2.2	141
75	Broadband dielectric studies on the interfacial dynamics enabled by use of nanostructured electrodes. Review of Scientific Instruments, 2008, 79, 026101.	0.6	38
76	Molecular dynamics in thin films of isotactic poly(methylmethacrylate) – revisited. Journal of Non-Crystalline Solids, 2007, 353, 4330-4333.	1.5	16
77	Broadband dielectric spectroscopy on ultrathin organic layers having one free (upper) interface. Review of Scientific Instruments, 2006, 77, 116108.	0.6	21
78	Confinement Effects on the Relaxation Time Distribution of the Dynamic Glass Transition in Ultrathin Polymer Films. Macromolecules, 2006, 39, 9385-9387.	2.2	75
79	Discrepancies in the characterization of the glass transition in thin films of hyperbranched polyesters. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3006-3010.	2.4	23
80	Molecular dynamics of hyperbranched polyesters in the confinement of thin films. European Physical Journal E, 2005, 17, 199-202.	0.7	30
81	Pattern formation in thin polystyrene films induced by an enhanced mobility in ambient air. Physical Review E, 2005, 71, 061801.	0.8	42
82	Molecular dynamics in thin (grafted) polymer layers. Colloid and Polymer Science, 2004, 282, 946-954.	1.0	6
83	Voronoi Tessellations in Thin Polymer Blend Films. Macromolecules, 2004, 37, 1691-1692.	2.2	10
84	Chain conformation in thin polymer layers as revealed by simulations of ideal random walks. European Physical Journal E, 2003, 12, 143-146.	0.7	7
85	Confinement-Induced Relaxation Process in Thin Films of Cis-Polyisoprene. Physical Review Letters, 2003, 91, 165702.	2.9	54
86	lonic Liquid Driven Enhancement in the Electromagnetic Interference Shielding Effectiveness of poly(methylâ€methacrylate) Based Composite Materials Filled with Hybrid Silverâ€coated Glass Microfibers. Macromolecular Materials and Engineering, 0, , 2100759.	1.7	4