
Ã-mer Oruç

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5580747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A strong-form local meshless approach based on radial basis function-finite difference (RBF-FD) method for solving multi-dimensional coupled damped Schrödinger system appearing in Bose–Einstein condensates. Communications in Nonlinear Science and Numerical Simulation, 2022, 104, 106042.	1.7	26
2	Numerical simulation of twoâ€dimensional and threeâ€dimensional generalized <scp>Klein–Gordon–Zakharov</scp> equations with power law nonlinearity via a meshless collocation method based on barycentric rational interpolation. Numerical Methods for Partial Differential Equations, 2022, 38, 1068-1089.	2.0	7
3	An application of Chebyshev wavelet method for the nonlinear time fractional SchrĶdinger equation. Mathematical Methods in the Applied Sciences, 2022, 45, 6635-6649.	1.2	6
4	Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation. Mathematics and Computers in Simulation, 2022, 197, 277-290.	2.4	18
5	An accurate computational method for two-dimensional (2D) fractional Rayleigh-Stokes problem for a heated generalized second grade fluid via linear barycentric interpolation method. Computers and Mathematics With Applications, 2022, 118, 120-131.	1.4	4
6	Application of a collocation method based on linear barycentric interpolation for solving 2D and 3D Klein-Gordon-Schrödinger (KGS) equations numerically. Engineering Computations, 2021, 38, 2394-2414.	0.7	4
7	Two meshless methods based on pseudo spectral delta-shaped basis functions and barycentric rational interpolation for numerical solution of modified Burgers equation. International Journal of Computer Mathematics, 2021, 98, 461-479.	1.0	15
8	A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov–Rubenchik equations. Applied Mathematics and Computation, 2021, 394, 125787.	1.4	15
9	An efficient meshfree method based on Pascal polynomials and multiple-scale approach for numerical solution of 2-D and 3-D second order elliptic interface problems. Journal of Computational Physics, 2021, 428, 110070.	1.9	16
10	Delta-shaped basis functions-pseudospectral method for numerical investigation of nonlinear generalized equal width equation in shallow water waves. Wave Motion, 2021, 101, 102687.	1.0	12
11	A local radial basis function-finite difference (RBF-FD) method for solving 1D and 2D coupled Schr¶dinger-Boussinesq (SBq) equations. Engineering Analysis With Boundary Elements, 2021, 129, 55-66.	2.0	27
12	Highly accurate numerical scheme based on polynomial scaling functions for equal width equation. Wave Motion, 2021, 105, 102760.	1.0	7
13	A meshless multiple-scale polynomial method for numerical solution of 3D convection–diffusion problems with variable coefficients. Engineering With Computers, 2020, 36, 1215-1228.	3.5	18
14	An efficient wavelet collocation method for nonlinear two-space dimensional Fisher–Kolmogorov–Petrovsky–Piscounov equation and two-space dimensional extended Fisher–Kolmogorov equation. Engineering With Computers, 2020, 36, 839-856.	3.5	32
15	A local hybrid kernel meshless method for numerical solutions of twoâ€dimensional fractional cable equation in neuronal dynamics. Numerical Methods for Partial Differential Equations, 2020, 36, 1699-1717.	2.0	20
16	A Strang Splitting Approach Combined with Chebyshev Wavelets to Solve the Regularized Long-Wave Equation Numerically. Mediterranean Journal of Mathematics, 2020, 17, 1.	0.4	17
17	A Meshfree Computational Approach Based on Multiple-Scale Pascal Polynomials for Numerical Solution of a 2D Elliptic Problem with Nonlocal Boundary Conditions. International Journal of Computational Methods, 2020, 17, 1950080.	0.8	14
18	Two meshless methods based on local radial basis function and barycentric rational interpolation for solving 2D viscoelastic wave equation. Computers and Mathematics With Applications, 2020, 79, 3272-3288.	1.4	35

Ã-мег Oruç

#	Article	IF	CITATIONS
19	Numerical investigation of nonlinear generalized regularized long wave equation via delta-shaped basis functions. International Journal of Optimization and Control: Theories and Applications, 2020, 10, 244-258.	0.8	6
20	Numerical solution to the deflection of thin plates using the two-dimensional Berger equation with a meshless method based on multiple-scale Pascal polynomials. Applied Mathematical Modelling, 2019, 74, 441-456.	2.2	23
21	A non-uniform Haar wavelet method for numerically solving two-dimensional convection-dominated equations and two-dimensional near singular elliptic equations. Computers and Mathematics With Applications, 2019, 77, 1799-1820.	1.4	32
22	A haar wavelet approximation for two-dimensional time fractional reaction–subdiffusion equation. Engineering With Computers, 2019, 35, 75-86.	3.5	53
23	A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete and Continuous Dynamical Systems - Series S, 2019, 12, 533-542.	0.6	17
24	A numerical procedure based on Hermite wavelets for two-dimensional hyperbolic telegraph equation. Engineering With Computers, 2018, 34, 741-755.	3.5	20
25	A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Communications in Nonlinear Science and Numerical Simulation, 2018, 57, 14-25.	1.7	32
26	A computational method based on Hermite wavelets for twoâ€dimensional Sobolev and regularized long wave equations in fluids. Numerical Methods for Partial Differential Equations, 2018, 34, 1693-1715.	2.0	37
27	Chebyshev Wavelet Method for Numerical Solutions of Coupled Burgers Equation. Hacettepe Journal of Mathematics and Statistics, 2018, 48, .	0.3	6
28	A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation. Computers and Mathematics With Applications, 2017, 74, 3042-3057.	1.4	35
29	A numerical treatment based on Haar wavelets for coupled KdV equation. International Journal of Optimization and Control: Theories and Applications, 2017, 7, 195-204.	0.8	11
30	Numerical solution of the KdV equation by Haar wavelet method. Pramana - Journal of Physics, 2016, 87, 1.	0.9	22
31	A unified approach for the numerical solution of time fractional Burgers' type equations. European Physical Journal Plus, 2016, 131, 1.	1.2	29
32	Numerical Solutions of Regularized Long Wave Equation By Haar Wavelet Method. Mediterranean Journal of Mathematics, 2016, 13, 3235-3253.	0.4	52
33	A Haar wavelet collocation method for coupled nonlinear Schrödinger–KdV equations. International Journal of Modern Physics C, 2016, 27, 1650103.	0.8	21
34	A Haar wavelet-finite difference hybrid method for the numerical solution of the modified Burgers' equation. Journal of Mathematical Chemistry, 2015, 53, 1592-1607.	0.7	62
35	An algorithm for the solution of second order fuzzy initial value problems. Expert Systems With Applications, 2013, 40, 953-957.	4.4	38
36	A combination of Lie group-based high order geometric integrator and delta-shaped basis functions for solving Korteweg–de Vries (KdV) equation. International Journal of Geometric Methods in Modern Physics, 0, , .	0.8	6

#	Article	IF	CITATIONS
37	Numerical investigation of dynamic Euler-Bernoulli equation via 3-Scale Haar wavelet collocation method. , 0, , 1-21.	0.3	5